Spaces:
Runtime error
Runtime error
Update managers/ltx_manager.py
Browse files- managers/ltx_manager.py +198 -171
managers/ltx_manager.py
CHANGED
|
@@ -2,193 +2,63 @@
|
|
| 2 |
#
|
| 3 |
# Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos
|
| 4 |
#
|
| 5 |
-
# Version: 2.
|
| 6 |
#
|
| 7 |
-
# This file manages the LTX-Video specialist pool. It
|
| 8 |
-
#
|
| 9 |
-
#
|
| 10 |
-
#
|
| 11 |
|
| 12 |
import torch
|
| 13 |
import gc
|
| 14 |
import os
|
|
|
|
| 15 |
import yaml
|
| 16 |
import logging
|
| 17 |
import huggingface_hub
|
| 18 |
import time
|
| 19 |
import threading
|
|
|
|
|
|
|
| 20 |
from typing import Optional, List, Tuple, Union
|
| 21 |
|
| 22 |
-
from
|
| 23 |
-
from
|
| 24 |
-
from managers.ltx_pipeline_utils import create_ltx_video_pipeline, calculate_padding
|
| 25 |
-
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline, ConditioningItem, LatentConditioningItem
|
| 26 |
-
from ltx_video.models.autoencoders.vae_encode import vae_encode, latent_to_pixel_coords
|
| 27 |
-
from ltx_video.pipelines.pipeline_ltx_video import LTXMultiScalePipeline
|
| 28 |
-
from diffusers.utils.torch_utils import randn_tensor
|
| 29 |
|
| 30 |
logger = logging.getLogger(__name__)
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
# ---
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
width: int,
|
| 44 |
-
vae_per_channel_normalize: bool = False,
|
| 45 |
-
generator=None,
|
| 46 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
|
| 47 |
-
"""
|
| 48 |
-
This is our custom version of the `prepare_conditioning` method.
|
| 49 |
-
It correctly handles both standard ConditioningItem (from pixels) and our
|
| 50 |
-
ADUC-specific LatentConditioningItem (from latents), which the original
|
| 51 |
-
method does not. This function will replace the original one at runtime.
|
| 52 |
-
"""
|
| 53 |
-
if not conditioning_items:
|
| 54 |
-
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
|
| 55 |
-
init_pixel_coords = latent_to_pixel_coords(
|
| 56 |
-
init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning
|
| 57 |
-
)
|
| 58 |
-
return init_latents, init_pixel_coords, None, 0
|
| 59 |
-
|
| 60 |
-
init_conditioning_mask = torch.zeros(init_latents[:, 0, :, :, :].shape, dtype=torch.float32, device=init_latents.device)
|
| 61 |
-
extra_conditioning_latents = []
|
| 62 |
-
extra_conditioning_pixel_coords = []
|
| 63 |
-
extra_conditioning_mask = []
|
| 64 |
-
extra_conditioning_num_latents = 0
|
| 65 |
-
|
| 66 |
-
is_latent_mode = hasattr(conditioning_items[0], 'latent_tensor')
|
| 67 |
-
|
| 68 |
-
if is_latent_mode:
|
| 69 |
-
for item in conditioning_items:
|
| 70 |
-
media_item_latents = item.latent_tensor.to(dtype=init_latents.dtype, device=init_latents.device)
|
| 71 |
-
media_frame_number = item.media_frame_number
|
| 72 |
-
strength = item.conditioning_strength
|
| 73 |
-
|
| 74 |
-
if media_frame_number == 0:
|
| 75 |
-
f_l, h_l, w_l = media_item_latents.shape[-3:]
|
| 76 |
-
init_latents[:, :, :f_l, :h_l, :w_l] = torch.lerp(init_latents[:, :, :f_l, :h_l, :w_l], media_item_latents, strength)
|
| 77 |
-
init_conditioning_mask[:, :f_l, :h_l, :w_l] = strength
|
| 78 |
-
else:
|
| 79 |
-
noise = randn_tensor(media_item_latents.shape, generator=generator, device=media_item_latents.device, dtype=media_item_latents.dtype)
|
| 80 |
-
media_item_latents = torch.lerp(noise, media_item_latents, strength)
|
| 81 |
-
patched_latents, latent_coords = self.patchifier.patchify(latents=media_item_latents)
|
| 82 |
-
pixel_coords = latent_to_pixel_coords(latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
|
| 83 |
-
pixel_coords[:, 0] += media_frame_number
|
| 84 |
-
extra_conditioning_num_latents += patched_latents.shape[1]
|
| 85 |
-
new_mask = torch.full(patched_latents.shape[:2], strength, dtype=torch.float32, device=init_latents.device)
|
| 86 |
-
extra_conditioning_latents.append(patched_latents)
|
| 87 |
-
extra_conditioning_pixel_coords.append(pixel_coords)
|
| 88 |
-
extra_conditioning_mask.append(new_mask)
|
| 89 |
-
else: # Original pixel-based logic for fallback
|
| 90 |
-
for item in conditioning_items:
|
| 91 |
-
if not isinstance(item, ConditioningItem): continue
|
| 92 |
-
item = self._resize_conditioning_item(item, height, width)
|
| 93 |
-
media_item_latents = vae_encode(
|
| 94 |
-
item.media_item.to(dtype=self.vae.dtype, device=self.vae.device),
|
| 95 |
-
self.vae, vae_per_channel_normalize=vae_per_channel_normalize
|
| 96 |
-
).to(dtype=init_latents.dtype)
|
| 97 |
-
media_frame_number = item.media_frame_number
|
| 98 |
-
strength = item.conditioning_strength
|
| 99 |
-
if media_frame_number == 0:
|
| 100 |
-
media_item_latents, l_x, l_y = self._get_latent_spatial_position(media_item_latents, item, height, width, strip_latent_border=True)
|
| 101 |
-
f_l, h_l, w_l = media_item_latents.shape[-3:]
|
| 102 |
-
init_latents[:, :, :f_l, l_y:l_y+h_l, l_x:l_x+w_l] = torch.lerp(init_latents[:, :, :f_l, l_y:l_y+h_l, l_x:l_x+w_l], media_item_latents, strength)
|
| 103 |
-
init_conditioning_mask[:, :f_l, l_y:l_y+h_l, l_x:l_x+w_l] = strength
|
| 104 |
-
else:
|
| 105 |
-
logger.warning("Pixel-based conditioning for non-zero frames is not fully implemented in this patch.")
|
| 106 |
-
pass
|
| 107 |
-
|
| 108 |
-
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
|
| 109 |
-
init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
|
| 110 |
-
init_conditioning_mask, _ = self.patchifier.patchify(latents=init_conditioning_mask.unsqueeze(1))
|
| 111 |
-
init_conditioning_mask = init_conditioning_mask.squeeze(-1)
|
| 112 |
-
|
| 113 |
-
if extra_conditioning_latents:
|
| 114 |
-
init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
|
| 115 |
-
init_pixel_coords = torch.cat([*extra_conditioning_pixel_coords, init_pixel_coords], dim=2)
|
| 116 |
-
init_conditioning_mask = torch.cat([*extra_conditioning_mask, init_conditioning_mask], dim=1)
|
| 117 |
-
if self.transformer.use_tpu_flash_attention:
|
| 118 |
-
init_latents = init_latents[:, :-extra_conditioning_num_latents]
|
| 119 |
-
init_pixel_coords = init_pixel_coords[:, :, :-extra_conditioning_num_latents]
|
| 120 |
-
init_conditioning_mask = init_conditioning_mask[:, :-extra_conditioning_num_latents]
|
| 121 |
-
|
| 122 |
-
return init_latents, init_pixel_coords, init_conditioning_mask, extra_conditioning_num_latents
|
| 123 |
-
|
| 124 |
-
# --- END OF MONKEY PATCHING SECTION ---
|
| 125 |
|
| 126 |
|
| 127 |
-
class LtxWorker:
|
| 128 |
-
"""
|
| 129 |
-
Represents a single instance of the LTX-Video pipeline on a specific device.
|
| 130 |
-
Manages model loading to CPU and movement to/from GPU.
|
| 131 |
-
"""
|
| 132 |
-
def __init__(self, device_id, ltx_config_file):
|
| 133 |
-
self.cpu_device = torch.device('cpu')
|
| 134 |
-
self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu')
|
| 135 |
-
logger.info(f"LTX Worker ({self.device}): Initializing with config '{ltx_config_file}'...")
|
| 136 |
-
|
| 137 |
-
with open(ltx_config_file, "r") as file:
|
| 138 |
-
self.config = yaml.safe_load(file)
|
| 139 |
-
|
| 140 |
-
self.is_distilled = "distilled" in self.config.get("checkpoint_path", "")
|
| 141 |
-
|
| 142 |
-
models_dir = "downloaded_models_gradio"
|
| 143 |
-
|
| 144 |
-
logger.info(f"LTX Worker ({self.device}): Loading model to CPU...")
|
| 145 |
-
model_path = os.path.join(models_dir, self.config["checkpoint_path"])
|
| 146 |
-
if not os.path.exists(model_path):
|
| 147 |
-
model_path = huggingface_hub.hf_hub_download(
|
| 148 |
-
repo_id="Lightricks/LTX-Video", filename=self.config["checkpoint_path"],
|
| 149 |
-
local_dir=models_dir, local_dir_use_symlinks=False
|
| 150 |
-
)
|
| 151 |
-
|
| 152 |
-
self.pipeline = create_ltx_video_pipeline(
|
| 153 |
-
ckpt_path=model_path, precision=self.config["precision"],
|
| 154 |
-
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
|
| 155 |
-
sampler=self.config["sampler"], device='cpu'
|
| 156 |
-
)
|
| 157 |
-
logger.info(f"LTX Worker ({self.device}): Model ready on CPU. Is distilled model? {self.is_distilled}")
|
| 158 |
-
|
| 159 |
-
def to_gpu(self):
|
| 160 |
-
"""Moves the pipeline to the designated GPU AND optimizes if possible."""
|
| 161 |
-
if self.device.type == 'cpu': return
|
| 162 |
-
logger.info(f"LTX Worker: Moving pipeline to GPU {self.device}...")
|
| 163 |
-
self.pipeline.to(self.device)
|
| 164 |
-
|
| 165 |
-
if self.device.type == 'cuda' and can_optimize_fp8():
|
| 166 |
-
logger.info(f"LTX Worker ({self.device}): FP8 supported GPU detected. Optimizing...")
|
| 167 |
-
optimize_ltx_worker(self)
|
| 168 |
-
logger.info(f"LTX Worker ({self.device}): Optimization complete.")
|
| 169 |
-
elif self.device.type == 'cuda':
|
| 170 |
-
logger.info(f"LTX Worker ({self.device}): FP8 optimization not supported or disabled.")
|
| 171 |
-
|
| 172 |
-
def to_cpu(self):
|
| 173 |
-
"""Moves the pipeline back to the CPU and frees GPU memory."""
|
| 174 |
-
if self.device.type == 'cpu': return
|
| 175 |
-
logger.info(f"LTX Worker: Unloading pipeline from GPU {self.device}...")
|
| 176 |
-
self.pipeline.to('cpu')
|
| 177 |
-
gc.collect()
|
| 178 |
-
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 179 |
-
|
| 180 |
-
def generate_video_fragment_internal(self, **kwargs):
|
| 181 |
-
"""Invokes the generation pipeline."""
|
| 182 |
-
return self.pipeline(**kwargs).images
|
| 183 |
-
|
| 184 |
class LtxPoolManager:
|
| 185 |
"""
|
| 186 |
Manages a pool of LtxWorkers for optimized multi-GPU usage.
|
| 187 |
-
|
| 188 |
"""
|
| 189 |
-
def __init__(self, device_ids,
|
| 190 |
logger.info(f"LTX POOL MANAGER: Creating workers for devices: {device_ids}")
|
| 191 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
self.current_worker_index = 0
|
| 193 |
self.lock = threading.Lock()
|
| 194 |
|
|
@@ -202,10 +72,45 @@ class LtxPoolManager:
|
|
| 202 |
else:
|
| 203 |
logger.info("LTX POOL MANAGER: Operating in CPU or mixed mode. GPU pre-warming skipped.")
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
def _apply_ltx_pipeline_patches(self):
|
| 206 |
-
"""
|
| 207 |
-
Applies runtime patches to the LTX pipeline for ADUC-SDR compatibility.
|
| 208 |
-
"""
|
| 209 |
logger.info("LTX POOL MANAGER: Applying ADUC-SDR patches to LTX pipeline...")
|
| 210 |
for worker in self.workers:
|
| 211 |
worker.pipeline.prepare_conditioning = _aduc_prepare_conditioning_patch.__get__(worker.pipeline, LTXVideoPipeline)
|
|
@@ -217,7 +122,7 @@ class LtxPoolManager:
|
|
| 217 |
self.current_worker_index = (self.current_worker_index + 1) % len(self.workers)
|
| 218 |
return worker
|
| 219 |
|
| 220 |
-
def _prepare_pipeline_params(self, worker: LtxWorker, **kwargs) -> dict:
|
| 221 |
pipeline_params = {
|
| 222 |
"height": kwargs['height'], "width": kwargs['width'], "num_frames": kwargs['video_total_frames'],
|
| 223 |
"frame_rate": kwargs.get('video_fps', 24),
|
|
@@ -297,12 +202,134 @@ class LtxPoolManager:
|
|
| 297 |
with torch.cuda.device(worker_to_use.device):
|
| 298 |
gc.collect(); torch.cuda.empty_cache()
|
| 299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
# --- Singleton Instantiation ---
|
| 301 |
-
logger.info("Reading config.yaml to initialize LTX Pool Manager...")
|
| 302 |
with open("config.yaml", 'r') as f:
|
| 303 |
config = yaml.safe_load(f)
|
| 304 |
ltx_gpus_required = config['specialists']['ltx']['gpus_required']
|
| 305 |
ltx_device_ids = hardware_manager.allocate_gpus('LTX', ltx_gpus_required)
|
| 306 |
-
|
| 307 |
-
ltx_manager_singleton = LtxPoolManager(device_ids=ltx_device_ids,
|
| 308 |
logger.info("Video Specialist (LTX) ready.")
|
|
|
|
| 2 |
#
|
| 3 |
# Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos
|
| 4 |
#
|
| 5 |
+
# Version: 2.2.0
|
| 6 |
#
|
| 7 |
+
# This file manages the LTX-Video specialist pool. It has been refactored to be
|
| 8 |
+
# self-contained by automatically cloning its own dependencies from the official
|
| 9 |
+
# LTX-Video repository. This modular approach makes the ADUC-SDR framework
|
| 10 |
+
# robust, portable, and easy to maintain.
|
| 11 |
|
| 12 |
import torch
|
| 13 |
import gc
|
| 14 |
import os
|
| 15 |
+
import sys
|
| 16 |
import yaml
|
| 17 |
import logging
|
| 18 |
import huggingface_hub
|
| 19 |
import time
|
| 20 |
import threading
|
| 21 |
+
import subprocess
|
| 22 |
+
from pathlib import Path
|
| 23 |
from typing import Optional, List, Tuple, Union
|
| 24 |
|
| 25 |
+
from optimization import optimize_ltx_worker, can_optimize_fp8
|
| 26 |
+
from hardware_manager import hardware_manager
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
logger = logging.getLogger(__name__)
|
| 29 |
|
| 30 |
+
# --- Dependency Management ---
|
| 31 |
+
DEPS_DIR = Path("./deps")
|
| 32 |
+
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 33 |
+
LTX_VIDEO_REPO_URL = "https://github.com/Lightricks/LTX-Video.git"
|
| 34 |
|
| 35 |
+
# --- Placeholder for lazy-loaded modules ---
|
| 36 |
+
create_ltx_video_pipeline = None
|
| 37 |
+
calculate_padding = None
|
| 38 |
+
LTXVideoPipeline = None
|
| 39 |
+
ConditioningItem = None
|
| 40 |
+
LatentConditioningItem = None
|
| 41 |
+
LTXMultiScalePipeline = None
|
| 42 |
+
vae_encode = None
|
| 43 |
+
latent_to_pixel_coords = None
|
| 44 |
+
randn_tensor = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
class LtxPoolManager:
|
| 48 |
"""
|
| 49 |
Manages a pool of LtxWorkers for optimized multi-GPU usage.
|
| 50 |
+
Handles its own code dependencies by cloning the LTX-Video repository.
|
| 51 |
"""
|
| 52 |
+
def __init__(self, device_ids, ltx_config_file_name):
|
| 53 |
logger.info(f"LTX POOL MANAGER: Creating workers for devices: {device_ids}")
|
| 54 |
+
self._ltx_modules_loaded = False
|
| 55 |
+
self._setup_dependencies()
|
| 56 |
+
self._lazy_load_ltx_modules()
|
| 57 |
+
|
| 58 |
+
# Adjust config path to be inside the cloned repo
|
| 59 |
+
self.ltx_config_file = LTX_VIDEO_REPO_DIR / "configs" / ltx_config_file_name
|
| 60 |
+
|
| 61 |
+
self.workers = [LtxWorker(dev_id, self.ltx_config_file) for dev_id in self]
|
| 62 |
self.current_worker_index = 0
|
| 63 |
self.lock = threading.Lock()
|
| 64 |
|
|
|
|
| 72 |
else:
|
| 73 |
logger.info("LTX POOL MANAGER: Operating in CPU or mixed mode. GPU pre-warming skipped.")
|
| 74 |
|
| 75 |
+
def _setup_dependencies(self):
|
| 76 |
+
"""Clones the LTX-Video repo if not found and adds it to the system path."""
|
| 77 |
+
if not LTX_VIDEO_REPO_DIR.exists():
|
| 78 |
+
logger.info(f"LTX-Video repository not found at '{LTX_VIDEO_REPO_DIR}'. Cloning from GitHub...")
|
| 79 |
+
try:
|
| 80 |
+
DEPS_DIR.mkdir(exist_ok=True)
|
| 81 |
+
subprocess.run(
|
| 82 |
+
["git", "clone", LTX_VIDEO_REPO_URL, str(LTX_VIDEO_REPO_DIR)],
|
| 83 |
+
check=True, capture_output=True, text=True
|
| 84 |
+
)
|
| 85 |
+
logger.info("LTX-Video repository cloned successfully.")
|
| 86 |
+
except subprocess.CalledProcessError as e:
|
| 87 |
+
logger.error(f"Failed to clone LTX-Video repository. Git stderr: {e.stderr}")
|
| 88 |
+
raise RuntimeError("Could not clone the required LTX-Video dependency from GitHub.")
|
| 89 |
+
else:
|
| 90 |
+
logger.info("Found local LTX-Video repository.")
|
| 91 |
+
|
| 92 |
+
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
|
| 93 |
+
sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve()))
|
| 94 |
+
logger.info(f"Added '{LTX_VIDEO_REPO_DIR.resolve()}' to sys.path.")
|
| 95 |
+
|
| 96 |
+
def _lazy_load_ltx_modules(self):
|
| 97 |
+
"""Dynamically imports LTX-Video modules after ensuring the repo exists."""
|
| 98 |
+
if self._ltx_modules_loaded:
|
| 99 |
+
return
|
| 100 |
+
|
| 101 |
+
global create_ltx_video_pipeline, calculate_padding, LTXVideoPipeline, ConditioningItem, LatentConditioningItem
|
| 102 |
+
global vae_encode, latent_to_pixel_coords, LTXMultiScalePipeline, randn_tensor
|
| 103 |
+
|
| 104 |
+
from inference import create_ltx_video_pipeline, calculate_padding
|
| 105 |
+
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline, ConditioningItem, LatentConditioningItem, LTXMultiScalePipeline
|
| 106 |
+
from ltx_video.models.autoencoders.vae_encode import vae_encode, latent_to_pixel_coords
|
| 107 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 108 |
+
|
| 109 |
+
self._ltx_modules_loaded = True
|
| 110 |
+
logger.info("LTX-Video modules have been dynamically loaded.")
|
| 111 |
+
|
| 112 |
def _apply_ltx_pipeline_patches(self):
|
| 113 |
+
"""Applies runtime patches to the LTX pipeline for ADUC-SDR compatibility."""
|
|
|
|
|
|
|
| 114 |
logger.info("LTX POOL MANAGER: Applying ADUC-SDR patches to LTX pipeline...")
|
| 115 |
for worker in self.workers:
|
| 116 |
worker.pipeline.prepare_conditioning = _aduc_prepare_conditioning_patch.__get__(worker.pipeline, LTXVideoPipeline)
|
|
|
|
| 122 |
self.current_worker_index = (self.current_worker_index + 1) % len(self.workers)
|
| 123 |
return worker
|
| 124 |
|
| 125 |
+
def _prepare_pipeline_params(self, worker: 'LtxWorker', **kwargs) -> dict:
|
| 126 |
pipeline_params = {
|
| 127 |
"height": kwargs['height'], "width": kwargs['width'], "num_frames": kwargs['video_total_frames'],
|
| 128 |
"frame_rate": kwargs.get('video_fps', 24),
|
|
|
|
| 202 |
with torch.cuda.device(worker_to_use.device):
|
| 203 |
gc.collect(); torch.cuda.empty_cache()
|
| 204 |
|
| 205 |
+
class LtxWorker:
|
| 206 |
+
"""
|
| 207 |
+
Represents a single instance of the LTX-Video pipeline on a specific device.
|
| 208 |
+
"""
|
| 209 |
+
def __init__(self, device_id, ltx_config_file):
|
| 210 |
+
self.cpu_device = torch.device('cpu')
|
| 211 |
+
self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu')
|
| 212 |
+
logger.info(f"LTX Worker ({self.device}): Initializing with config '{ltx_config_file}'...")
|
| 213 |
+
|
| 214 |
+
with open(ltx_config_file, "r") as file:
|
| 215 |
+
self.config = yaml.safe_load(file)
|
| 216 |
+
|
| 217 |
+
self.is_distilled = "distilled" in self.config.get("checkpoint_path", "")
|
| 218 |
+
|
| 219 |
+
models_dir = LTX_VIDEO_REPO_DIR / "models_downloaded"
|
| 220 |
+
|
| 221 |
+
logger.info(f"LTX Worker ({self.device}): Preparing to load model...")
|
| 222 |
+
model_filename = self.config["checkpoint_path"]
|
| 223 |
+
model_path = huggingface_hub.hf_hub_download(
|
| 224 |
+
repo_id="Lightricks/LTX-Video", filename=model_filename,
|
| 225 |
+
local_dir=str(models_dir), local_dir_use_symlinks=False
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
self.pipeline = create_ltx_video_pipeline(
|
| 229 |
+
ckpt_path=model_path,
|
| 230 |
+
precision=self.config["precision"],
|
| 231 |
+
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
|
| 232 |
+
sampler=self.config["sampler"],
|
| 233 |
+
device='cpu'
|
| 234 |
+
)
|
| 235 |
+
logger.info(f"LTX Worker ({self.device}): Model ready on CPU. Is distilled model? {self.is_distilled}")
|
| 236 |
+
|
| 237 |
+
def to_gpu(self):
|
| 238 |
+
if self.device.type == 'cpu': return
|
| 239 |
+
logger.info(f"LTX Worker: Moving pipeline to GPU {self.device}...")
|
| 240 |
+
self.pipeline.to(self.device)
|
| 241 |
+
if self.device.type == 'cuda' and can_optimize_fp8():
|
| 242 |
+
logger.info(f"LTX Worker ({self.device}): FP8 supported GPU detected. Optimizing...")
|
| 243 |
+
optimize_ltx_worker(self)
|
| 244 |
+
logger.info(f"LTX Worker ({self.device}): Optimization complete.")
|
| 245 |
+
elif self.device.type == 'cuda':
|
| 246 |
+
logger.info(f"LTX Worker ({self.device}): FP8 optimization not supported or disabled.")
|
| 247 |
+
|
| 248 |
+
def to_cpu(self):
|
| 249 |
+
if self.device.type == 'cpu': return
|
| 250 |
+
logger.info(f"LTX Worker: Unloading pipeline from GPU {self.device}...")
|
| 251 |
+
self.pipeline.to('cpu')
|
| 252 |
+
gc.collect()
|
| 253 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 254 |
+
|
| 255 |
+
def generate_video_fragment_internal(self, **kwargs):
|
| 256 |
+
return self.pipeline(**kwargs).images
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def _aduc_prepare_conditioning_patch(
|
| 260 |
+
self: LTXVideoPipeline,
|
| 261 |
+
conditioning_items: Optional[List[Union[ConditioningItem, "LatentConditioningItem"]]],
|
| 262 |
+
init_latents: torch.Tensor,
|
| 263 |
+
num_frames: int,
|
| 264 |
+
height: int,
|
| 265 |
+
width: int,
|
| 266 |
+
vae_per_channel_normalize: bool = False,
|
| 267 |
+
generator=None,
|
| 268 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
|
| 269 |
+
if not conditioning_items:
|
| 270 |
+
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
|
| 271 |
+
init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
|
| 272 |
+
return init_latents, init_pixel_coords, None, 0
|
| 273 |
+
init_conditioning_mask = torch.zeros(init_latents[:, 0, :, :, :].shape, dtype=torch.float32, device=init_latents.device)
|
| 274 |
+
extra_conditioning_latents = []
|
| 275 |
+
extra_conditioning_pixel_coords = []
|
| 276 |
+
extra_conditioning_mask = []
|
| 277 |
+
extra_conditioning_num_latents = 0
|
| 278 |
+
is_latent_mode = hasattr(conditioning_items[0], 'latent_tensor')
|
| 279 |
+
if is_latent_mode:
|
| 280 |
+
for item in conditioning_items:
|
| 281 |
+
media_item_latents = item.latent_tensor.to(dtype=init_latents.dtype, device=init_latents.device)
|
| 282 |
+
media_frame_number = item.media_frame_number
|
| 283 |
+
strength = item.conditioning_strength
|
| 284 |
+
if media_frame_number == 0:
|
| 285 |
+
f_l, h_l, w_l = media_item_latents.shape[-3:]
|
| 286 |
+
init_latents[:, :, :f_l, :h_l, :w_l] = torch.lerp(init_latents[:, :, :f_l, :h_l, :w_l], media_item_latents, strength)
|
| 287 |
+
init_conditioning_mask[:, :f_l, :h_l, :w_l] = strength
|
| 288 |
+
else:
|
| 289 |
+
noise = randn_tensor(media_item_latents.shape, generator=generator, device=media_item_latents.device, dtype=media_item_latents.dtype)
|
| 290 |
+
media_item_latents = torch.lerp(noise, media_item_latents, strength)
|
| 291 |
+
patched_latents, latent_coords = self.patchifier.patchify(latents=media_item_latents)
|
| 292 |
+
pixel_coords = latent_to_pixel_coords(latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
|
| 293 |
+
pixel_coords[:, 0] += media_frame_number
|
| 294 |
+
extra_conditioning_num_latents += patched_latents.shape[1]
|
| 295 |
+
new_mask = torch.full(patched_latents.shape[:2], strength, dtype=torch.float32, device=init_latents.device)
|
| 296 |
+
extra_conditioning_latents.append(patched_latents)
|
| 297 |
+
extra_conditioning_pixel_coords.append(pixel_coords)
|
| 298 |
+
extra_conditioning_mask.append(new_mask)
|
| 299 |
+
else:
|
| 300 |
+
for item in conditioning_items:
|
| 301 |
+
if not isinstance(item, ConditioningItem): continue
|
| 302 |
+
item = self._resize_conditioning_item(item, height, width)
|
| 303 |
+
media_item_latents = vae_encode(item.media_item.to(dtype=self.vae.dtype, device=self.vae.device), self.vae, vae_per_channel_normalize=vae_per_channel_normalize).to(dtype=init_latents.dtype)
|
| 304 |
+
media_frame_number = item.media_frame_number
|
| 305 |
+
strength = item.conditioning_strength
|
| 306 |
+
if media_frame_number == 0:
|
| 307 |
+
media_item_latents, l_x, l_y = self._get_latent_spatial_position(media_item_latents, item, height, width, strip_latent_border=True)
|
| 308 |
+
f_l, h_l, w_l = media_item_latents.shape[-3:]
|
| 309 |
+
init_latents[:, :, :f_l, l_y:l_y+h_l, l_x:l_x+w_l] = torch.lerp(init_latents[:, :, :f_l, l_y:l_y+h_l, l_x:l_x+w_l], media_item_latents, strength)
|
| 310 |
+
init_conditioning_mask[:, :f_l, l_y:l_y+h_l, l_x:l_x+w_l] = strength
|
| 311 |
+
else:
|
| 312 |
+
logger.warning("Pixel-based conditioning for non-zero frames is not fully implemented in this patch.")
|
| 313 |
+
init_latents, init_latent_coords = self.patchifier.patchify(latents=init_latents)
|
| 314 |
+
init_pixel_coords = latent_to_pixel_coords(init_latent_coords, self.vae, causal_fix=self.transformer.config.causal_temporal_positioning)
|
| 315 |
+
init_conditioning_mask, _ = self.patchifier.patchify(latents=init_conditioning_mask.unsqueeze(1))
|
| 316 |
+
init_conditioning_mask = init_conditioning_mask.squeeze(-1)
|
| 317 |
+
if extra_conditioning_latents:
|
| 318 |
+
init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
|
| 319 |
+
init_pixel_coords = torch.cat([*extra_conditioning_pixel_coords, init_pixel_coords], dim=2)
|
| 320 |
+
init_conditioning_mask = torch.cat([*extra_conditioning_mask, init_conditioning_mask], dim=1)
|
| 321 |
+
if self.transformer.use_tpu_flash_attention:
|
| 322 |
+
init_latents = init_latents[:, :-extra_conditioning_num_latents]
|
| 323 |
+
init_pixel_coords = init_pixel_coords[:, :, :-extra_conditioning_num_latents]
|
| 324 |
+
init_conditioning_mask = init_conditioning_mask[:, :-extra_conditioning_num_latents]
|
| 325 |
+
return init_latents, init_pixel_coords, init_conditioning_mask, extra_conditioning_num_latents
|
| 326 |
+
|
| 327 |
+
|
| 328 |
# --- Singleton Instantiation ---
|
|
|
|
| 329 |
with open("config.yaml", 'r') as f:
|
| 330 |
config = yaml.safe_load(f)
|
| 331 |
ltx_gpus_required = config['specialists']['ltx']['gpus_required']
|
| 332 |
ltx_device_ids = hardware_manager.allocate_gpus('LTX', ltx_gpus_required)
|
| 333 |
+
ltx_config_filename = config['specialists']['ltx']['config_file']
|
| 334 |
+
ltx_manager_singleton = LtxPoolManager(device_ids=ltx_device_ids, ltx_config_file_name=ltx_config_filename)
|
| 335 |
logger.info("Video Specialist (LTX) ready.")
|