Spaces:
Sleeping
Sleeping
| title: DeepSeek OCR Test | |
| emoji: 🐋 | |
| colorFrom: indigo | |
| colorTo: blue | |
| sdk: gradio | |
| sdk_version: 5.49.1 | |
| app_file: app.py | |
| pinned: false | |
| <div align="center"> | |
| <img src="assets/logo.svg" width="60%" alt="DeepSeek AI" /> | |
| </div> | |
| <hr> | |
| <div align="center"> | |
| <a href="https://www.deepseek.com/" target="_blank"> | |
| <img alt="Homepage" src="assets/badge.svg" /> | |
| </a> | |
| <a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR" target="_blank"> | |
| <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" /> | |
| </a> | |
| </div> | |
| <div align="center"> | |
| <a href="https://discord.gg/Tc7c45Zzu5" target="_blank"> | |
| <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" /> | |
| </a> | |
| <a href="https://twitter.com/deepseek_ai" target="_blank"> | |
| <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" /> | |
| </a> | |
| </div> | |
| <p align="center"> | |
| <a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR"><b>📥 Model Download</b></a> | | |
| <a href="https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek_OCR_paper.pdf"><b>📄 Paper Link</b></a> | | |
| <a href="https://arxiv.org/abs/2510.18234"><b>📄 Arxiv Paper Link</b></a> | | |
| </p> | |
| <h2> | |
| <p align="center"> | |
| <a href="">DeepSeek-OCR: Contexts Optical Compression</a> | |
| </p> | |
| </h2> | |
| <p align="center"> | |
| <img src="assets/fig1.png" style="width: 1000px" align=center> | |
| </p> | |
| <p align="center"> | |
| <a href="">Explore the boundaries of visual-text compression.</a> | |
| </p> | |
| ## Release | |
| - [2025/10/20]🚀🚀🚀 We release DeepSeek-OCR, a model to investigate the role of vision encoders from an LLM-centric viewpoint. | |
| ## Contents | |
| - [Install](#install) | |
| - [vLLM Inference](#vllm-inference) | |
| - [Transformers Inference](#transformers-inference) | |
| ## Install | |
| >Our environment is cuda11.8+torch2.6.0. | |
| 1. Clone this repository and navigate to the DeepSeek-OCR folder | |
| ```bash | |
| git clone https://github.com/deepseek-ai/DeepSeek-OCR.git | |
| ``` | |
| 2. Conda | |
| ```Shell | |
| conda create -n deepseek-ocr python=3.12.9 -y | |
| conda activate deepseek-ocr | |
| ``` | |
| 3. Packages | |
| - download the vllm-0.8.5 [whl](https://github.com/vllm-project/vllm/releases/tag/v0.8.5) | |
| ```Shell | |
| pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu118 | |
| pip install vllm-0.8.5+cu118-cp38-abi3-manylinux1_x86_64.whl | |
| pip install -r requirements.txt | |
| pip install flash-attn==2.7.3 --no-build-isolation | |
| ``` | |
| **Note:** if you want vLLM and transformers codes to run in the same environment, you don't need to worry about this installation error like: vllm 0.8.5+cu118 requires transformers>=4.51.1 | |
| ## vLLM-Inference | |
| - VLLM: | |
| >**Note:** change the INPUT_PATH/OUTPUT_PATH and other settings in the DeepSeek-OCR-master/DeepSeek-OCR-vllm/config.py | |
| ```Shell | |
| cd DeepSeek-OCR-master/DeepSeek-OCR-vllm | |
| ``` | |
| 1. image: streaming output | |
| ```Shell | |
| python run_dpsk_ocr_image.py | |
| ``` | |
| 2. pdf: concurrency ~2500tokens/s(an A100-40G) | |
| ```Shell | |
| python run_dpsk_ocr_pdf.py | |
| ``` | |
| 3. batch eval for benchmarks | |
| ```Shell | |
| python run_dpsk_ocr_eval_batch.py | |
| ``` | |
| ## Transformers-Inference | |
| - Transformers | |
| ```python | |
| from transformers import AutoModel, AutoTokenizer | |
| import torch | |
| import os | |
| os.environ["CUDA_VISIBLE_DEVICES"] = '0' | |
| model_name = 'deepseek-ai/DeepSeek-OCR' | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| model = AutoModel.from_pretrained(model_name, _attn_implementation='flash_attention_2', trust_remote_code=True, use_safetensors=True) | |
| model = model.eval().cuda().to(torch.bfloat16) | |
| # prompt = "<image>\nFree OCR. " | |
| prompt = "<image>\n<|grounding|>Convert the document to markdown. " | |
| image_file = 'your_image.jpg' | |
| output_path = 'your/output/dir' | |
| res = model.infer(tokenizer, prompt=prompt, image_file=image_file, output_path = output_path, base_size = 1024, image_size = 640, crop_mode=True, save_results = True, test_compress = True) | |
| ``` | |
| or you can | |
| ```Shell | |
| cd DeepSeek-OCR-master/DeepSeek-OCR-hf | |
| python run_dpsk_ocr.py | |
| ``` | |
| ## Support-Modes | |
| The current open-source model supports the following modes: | |
| - Native resolution: | |
| - Tiny: 512×512 (64 vision tokens)✅ | |
| - Small: 640×640 (100 vision tokens)✅ | |
| - Base: 1024×1024 (256 vision tokens)✅ | |
| - Large: 1280×1280 (400 vision tokens)✅ | |
| - Dynamic resolution | |
| - Gundam: n×640×640 + 1×1024×1024 ✅ | |
| ## Prompts examples | |
| ```python | |
| # document: <image>\n<|grounding|>Convert the document to markdown. | |
| # other image: <image>\n<|grounding|>OCR this image. | |
| # without layouts: <image>\nFree OCR. | |
| # figures in document: <image>\nParse the figure. | |
| # general: <image>\nDescribe this image in detail. | |
| # rec: <image>\nLocate <|ref|>xxxx<|/ref|> in the image. | |
| # '先天下之忧而忧' | |
| ``` | |
| ## Visualizations | |
| <table> | |
| <tr> | |
| <td><img src="assets/show1.jpg" style="width: 500px"></td> | |
| <td><img src="assets/show2.jpg" style="width: 500px"></td> | |
| </tr> | |
| <tr> | |
| <td><img src="assets/show3.jpg" style="width: 500px"></td> | |
| <td><img src="assets/show4.jpg" style="width: 500px"></td> | |
| </tr> | |
| </table> | |
| ## Acknowledgement | |
| We would like to thank [Vary](https://github.com/Ucas-HaoranWei/Vary/), [GOT-OCR2.0](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/), [MinerU](https://github.com/opendatalab/MinerU), [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR), [OneChart](https://github.com/LingyvKong/OneChart), [Slow Perception](https://github.com/Ucas-HaoranWei/Slow-Perception) for their valuable models and ideas. | |
| We also appreciate the benchmarks: [Fox](https://github.com/ucaslcl/Fox), [OminiDocBench](https://github.com/opendatalab/OmniDocBench). | |
| ## Citation | |
| ```bibtex | |
| @article{wei2024deepseek-ocr, | |
| title={DeepSeek-OCR: Contexts Optical Compression}, | |
| author={Wei, Haoran and Sun, Yaofeng and Li, Yukun}, | |
| journal={arXiv preprint arXiv:2510.18234}, | |
| year={2025} | |
| } |