deepseek-ocr-test / README.md
CassianK's picture
Update README.md
5773306 verified
|
raw
history blame
5.89 kB
---
title: DeepSeek OCR Test
emoji: 🐋
colorFrom: indigo
colorTo: blue
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
pinned: false
---
<div align="center">
<img src="assets/logo.svg" width="60%" alt="DeepSeek AI" />
</div>
<hr>
<div align="center">
<a href="https://www.deepseek.com/" target="_blank">
<img alt="Homepage" src="assets/badge.svg" />
</a>
<a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR" target="_blank">
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" />
</a>
</div>
<div align="center">
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank">
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" />
</a>
<a href="https://twitter.com/deepseek_ai" target="_blank">
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" />
</a>
</div>
<p align="center">
<a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR"><b>📥 Model Download</b></a> |
<a href="https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek_OCR_paper.pdf"><b>📄 Paper Link</b></a> |
<a href="https://arxiv.org/abs/2510.18234"><b>📄 Arxiv Paper Link</b></a> |
</p>
<h2>
<p align="center">
<a href="">DeepSeek-OCR: Contexts Optical Compression</a>
</p>
</h2>
<p align="center">
<img src="assets/fig1.png" style="width: 1000px" align=center>
</p>
<p align="center">
<a href="">Explore the boundaries of visual-text compression.</a>
</p>
## Release
- [2025/10/20]🚀🚀🚀 We release DeepSeek-OCR, a model to investigate the role of vision encoders from an LLM-centric viewpoint.
## Contents
- [Install](#install)
- [vLLM Inference](#vllm-inference)
- [Transformers Inference](#transformers-inference)
## Install
>Our environment is cuda11.8+torch2.6.0.
1. Clone this repository and navigate to the DeepSeek-OCR folder
```bash
git clone https://github.com/deepseek-ai/DeepSeek-OCR.git
```
2. Conda
```Shell
conda create -n deepseek-ocr python=3.12.9 -y
conda activate deepseek-ocr
```
3. Packages
- download the vllm-0.8.5 [whl](https://github.com/vllm-project/vllm/releases/tag/v0.8.5)
```Shell
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu118
pip install vllm-0.8.5+cu118-cp38-abi3-manylinux1_x86_64.whl
pip install -r requirements.txt
pip install flash-attn==2.7.3 --no-build-isolation
```
**Note:** if you want vLLM and transformers codes to run in the same environment, you don't need to worry about this installation error like: vllm 0.8.5+cu118 requires transformers>=4.51.1
## vLLM-Inference
- VLLM:
>**Note:** change the INPUT_PATH/OUTPUT_PATH and other settings in the DeepSeek-OCR-master/DeepSeek-OCR-vllm/config.py
```Shell
cd DeepSeek-OCR-master/DeepSeek-OCR-vllm
```
1. image: streaming output
```Shell
python run_dpsk_ocr_image.py
```
2. pdf: concurrency ~2500tokens/s(an A100-40G)
```Shell
python run_dpsk_ocr_pdf.py
```
3. batch eval for benchmarks
```Shell
python run_dpsk_ocr_eval_batch.py
```
## Transformers-Inference
- Transformers
```python
from transformers import AutoModel, AutoTokenizer
import torch
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
model_name = 'deepseek-ai/DeepSeek-OCR'
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name, _attn_implementation='flash_attention_2', trust_remote_code=True, use_safetensors=True)
model = model.eval().cuda().to(torch.bfloat16)
# prompt = "<image>\nFree OCR. "
prompt = "<image>\n<|grounding|>Convert the document to markdown. "
image_file = 'your_image.jpg'
output_path = 'your/output/dir'
res = model.infer(tokenizer, prompt=prompt, image_file=image_file, output_path = output_path, base_size = 1024, image_size = 640, crop_mode=True, save_results = True, test_compress = True)
```
or you can
```Shell
cd DeepSeek-OCR-master/DeepSeek-OCR-hf
python run_dpsk_ocr.py
```
## Support-Modes
The current open-source model supports the following modes:
- Native resolution:
- Tiny: 512×512 (64 vision tokens)✅
- Small: 640×640 (100 vision tokens)✅
- Base: 1024×1024 (256 vision tokens)✅
- Large: 1280×1280 (400 vision tokens)✅
- Dynamic resolution
- Gundam: n×640×640 + 1×1024×1024 ✅
## Prompts examples
```python
# document: <image>\n<|grounding|>Convert the document to markdown.
# other image: <image>\n<|grounding|>OCR this image.
# without layouts: <image>\nFree OCR.
# figures in document: <image>\nParse the figure.
# general: <image>\nDescribe this image in detail.
# rec: <image>\nLocate <|ref|>xxxx<|/ref|> in the image.
# '先天下之忧而忧'
```
## Visualizations
<table>
<tr>
<td><img src="assets/show1.jpg" style="width: 500px"></td>
<td><img src="assets/show2.jpg" style="width: 500px"></td>
</tr>
<tr>
<td><img src="assets/show3.jpg" style="width: 500px"></td>
<td><img src="assets/show4.jpg" style="width: 500px"></td>
</tr>
</table>
## Acknowledgement
We would like to thank [Vary](https://github.com/Ucas-HaoranWei/Vary/), [GOT-OCR2.0](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/), [MinerU](https://github.com/opendatalab/MinerU), [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR), [OneChart](https://github.com/LingyvKong/OneChart), [Slow Perception](https://github.com/Ucas-HaoranWei/Slow-Perception) for their valuable models and ideas.
We also appreciate the benchmarks: [Fox](https://github.com/ucaslcl/Fox), [OminiDocBench](https://github.com/opendatalab/OmniDocBench).
## Citation
```bibtex
@article{wei2024deepseek-ocr,
title={DeepSeek-OCR: Contexts Optical Compression},
author={Wei, Haoran and Sun, Yaofeng and Li, Yukun},
journal={arXiv preprint arXiv:2510.18234},
year={2025}
}