GeoLLM / KNN.py
Ciallo0d00's picture
Upload folder using huggingface_hub
badcf3c verified
import json
import numpy as np
from transformers import AutoTokenizer, AutoModel
from sklearn.neighbors import NearestNeighbors
from tqdm import tqdm
# 定义三元组检索系统类
class TripleRetrievalSystem:
def __init__(self, model_name='bert-base-uncased'):
# 初始化BERT分词器和模型(使用预训练的BERT基础模型)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
# 初始化训练数据存储结构
self.train_embeddings = []
self.train_texts = []
def _generate_embeddings(self, text):
"""生成上下文敏感的token嵌入"""
# 对输入文本进行分词和编码(自动截断到512个token)
inputs = self.tokenizer(text, return_tensors='pt', truncation=True, max_length=4096)
# 获取BERT模型的隐藏层输出(最后一层)
outputs = self.model(**inputs)
# 将输出转换为numpy数组并去除批次维度
return outputs.last_hidden_state.detach().numpy()[0]
def load_train_data(self, train_path):
"""预处理并存储训练数据嵌入"""
with open(train_path, encoding='utf-8') as f:
train_data = json.load(f)
print("Processing training data...")
# 仅处理500-1000索引的数据(演示用切片操作)
train_data = train_data[500:1000]
# 使用进度条遍历训练数据
for item in tqdm(train_data):
text = item['text']
# 生成文本的token级嵌入
embeddings = self._generate_embeddings(text)
# 平均池化操作(将token向量平均为文本向量)
self.train_embeddings.append(embeddings.mean(axis=0))
self.train_texts.append(text)
# 转换为numpy数组提升计算效率
self.train_embeddings = np.array(self.train_embeddings)
# 构建k-NN模型(使用余弦相似度,k=1)
self.nbrs = NearestNeighbors(n_neighbors=1, metric='cosine').fit(self.train_embeddings)
def retrieve_similar(self, test_path, output_path):
"""处理测试数据并查找相似训练样本"""
with open(test_path, encoding='utf-8') as f:
test_data = json.load(f)
results = []
print("Processing test data...")
# 遍历测试数据并生成结果
for item in tqdm(test_data):
test_text = item['text']
# 生成测试文本的嵌入向量
test_embed = self._generate_embeddings(test_text).mean(axis=0)
# 查找最近邻(返回距离和索引)
distances, indices = self.nbrs.kneighbors([test_embed])
# 收集相关训练文本
relevant = [self.train_texts[i] for i in indices[0]]
results.append({
"test_text": test_text,
"relevant_train_texts": relevant
})
# 保存JSON结果(确保中文字符正常显示)
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(results, f, ensure_ascii=False, indent=2)
# 示例运行
if __name__ == "__main__":
system = TripleRetrievalSystem()
system.load_train_data('./data/train_triples.json')
# 处理测试数据并输出结果
system.retrieve_similar(
'./data/test_triples.json',
'./data/output_results.json'
)