Spaces:
Running
Running
| import os | |
| import torch | |
| import torchaudio | |
| import torch.nn as nn | |
| import torchaudio.transforms as T | |
| import noisereduce as nr | |
| import numpy as np | |
| from asteroid.models import DCCRNet | |
| TEMP_DIR = "temp_filtered" | |
| OUTPUT_PATH = os.path.join(TEMP_DIR, "ivestis.wav") | |
| os.makedirs(TEMP_DIR, exist_ok=True) | |
| class WaveUNet(nn.Module): | |
| def __init__(self): | |
| super(WaveUNet, self).__init__() | |
| self.encoder = nn.Sequential( | |
| nn.Conv1d(1, 16, kernel_size=3, stride=1, padding=1), | |
| nn.ReLU(), | |
| nn.Conv1d(16, 32, kernel_size=3, stride=1, padding=1), | |
| nn.ReLU(), | |
| nn.Conv1d(32, 64, kernel_size=3, stride=1, padding=1), | |
| nn.ReLU(), | |
| ) | |
| self.decoder = nn.Sequential( | |
| nn.ConvTranspose1d(64, 32, kernel_size=3, stride=1, padding=1), | |
| nn.ReLU(), | |
| nn.ConvTranspose1d(32, 16, kernel_size=3, stride=1, padding=1), | |
| nn.ReLU(), | |
| nn.ConvTranspose1d(16, 1, kernel_size=3, stride=1, padding=1) | |
| ) | |
| def forward(self, x): | |
| x = self.encoder(x) | |
| x = self.decoder(x) | |
| return x | |
| def filtruoti_su_waveunet(input_path, output_path): | |
| print("🔧 Wave-U-Net filtravimas...") | |
| model = WaveUNet() | |
| model.eval() | |
| mixture, sr = torchaudio.load(input_path) | |
| if sr != 16000: | |
| print("🔁 Resample į 16kHz...") | |
| resampler = T.Resample(orig_freq=sr, new_freq=16000).to(mixture.device) | |
| mixture = resampler(mixture) | |
| if mixture.dim() == 2: | |
| mixture = mixture.unsqueeze(0) | |
| with torch.no_grad(): | |
| output = model(mixture) | |
| output = output.squeeze(0) | |
| torchaudio.save(output_path, output, 16000) | |
| print(f"✅ Wave-U-Net išsaugota: {output_path}") | |
| def filtruoti_su_denoiser(input_path, output_path): | |
| print("🔧 Denoiser (DCCRNet)...") | |
| model = DCCRNet.from_pretrained("JorisCos/DCCRNet_Libri1Mix_enhsingle_16k") | |
| mixture, sr = torchaudio.load(input_path) | |
| if sr != 16000: | |
| print("🔁 Resample į 16kHz...") | |
| resampler = T.Resample(orig_freq=sr, new_freq=16000).to(mixture.device) | |
| mixture = resampler(mixture) | |
| with torch.no_grad(): | |
| est_source = model.separate(mixture) | |
| torchaudio.save(output_path, est_source[0], 16000) | |
| print(f"✅ Denoiser išsaugota: {output_path}") | |
| def filtruoti_su_noisereduce(input_path, output_path): | |
| print("🔧 Noisereduce filtravimas...") | |
| waveform, sr = torchaudio.load(input_path) | |
| audio = waveform.detach().cpu().numpy()[0] | |
| reduced = nr.reduce_noise(y=audio, sr=sr) | |
| reduced_tensor = torch.from_numpy(reduced).unsqueeze(0) | |
| torchaudio.save(output_path, reduced_tensor, sr) | |
| print(f"✅ Noisereduce išsaugota: {output_path}") | |
| def filtruoti_audio(input_path: str, metodas: str) -> str: | |
| if metodas == "Denoiser": | |
| filtruoti_su_denoiser(input_path, OUTPUT_PATH) | |
| elif metodas == "Wave-U-Net": | |
| filtruoti_su_waveunet(input_path, OUTPUT_PATH) | |
| elif metodas == "Noisereduce": | |
| filtruoti_su_noisereduce(input_path, OUTPUT_PATH) | |
| else: | |
| raise ValueError("Nepalaikomas filtravimo metodas") | |
| return OUTPUT_PATH | |