File size: 10,525 Bytes
6a50f6f 5d1ef4b 9aa1873 5d1ef4b 9aa1873 5d1ef4b 9aa1873 5d1ef4b 9aa1873 5d1ef4b 9aa1873 5d1ef4b 9aa1873 5d1ef4b 9aa1873 6a50f6f 5d1ef4b 6a50f6f 9aa1873 5d1ef4b 9aa1873 6a50f6f 9aa1873 5d1ef4b 9aa1873 6a50f6f 5d1ef4b 9aa1873 5d1ef4b 9aa1873 5d1ef4b 9aa1873 5d1ef4b 6a50f6f 9aa1873 6a50f6f 9aa1873 6a50f6f 9aa1873 6a50f6f 9aa1873 6a50f6f 5d1ef4b 6a50f6f 9aa1873 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
import gradio as gr
set_seed(67)
device = "mps"
# Initialize models and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-0.5B-Instruct")
draft_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Coder-0.5B-Instruct", torch_dtype=torch.bfloat16).to(device)
verify_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Coder-3B-Instruct", torch_dtype=torch.bfloat16).to(device)
def draft(input_ids, gamma, confidence_threshold, eos_token, past_kv):
generated = input_ids.clone()
draft_probs = []
for _ in range(gamma):
with torch.no_grad():
outputs = draft_model(
generated if past_kv is None else generated[:, -1:],
past_key_values=past_kv,
use_cache=True
)
logits = outputs.logits[:, -1, :]
past_kv = outputs.past_key_values
probs = torch.softmax(logits, dim=-1)
confidence = probs.max().item()
if confidence < confidence_threshold and len(draft_probs) > 0:
break
next_token = torch.argmax(probs, dim=-1, keepdim=True)
draft_probs.append(probs)
generated = torch.cat([generated, next_token], dim=-1)
if next_token.item() == eos_token:
break
return generated, draft_probs, past_kv
def verify(drafted, drafted_probs, eos_token, past_kv):
draft_len = len(drafted_probs)
with torch.no_grad():
if past_kv is None:
target_outputs = verify_model(drafted, use_cache=True)
target_logits = target_outputs.logits[:, -draft_len - 1:-1, :]
else:
target_outputs = verify_model(
drafted[:, -(draft_len + 1):],
past_key_values=past_kv,
use_cache=True
)
target_logits = target_outputs.logits[:, :-1, :]
past_kv = target_outputs.past_key_values
target_probs = torch.softmax(target_logits, dim=-1)
accepted_tokens = []
num_accepted = 0
for i in range(draft_len):
q = drafted_probs[i]
p = target_probs[:, i, :]
token = drafted[:, i - draft_len]
x = token[0].item()
q_x = q[0, x].item()
p_x = p[0, x].item()
if q_x <= p_x:
accepted_tokens.append(x)
num_accepted += 1
else:
r = torch.rand(1).item()
acceptance_rate = p_x / q_x
if r < acceptance_rate:
accepted_tokens.append(x)
num_accepted += 1
else:
adjusted = torch.clamp(p - q, min=0)
adjusted = adjusted / adjusted.sum()
new_token = torch.multinomial(adjusted, num_samples=1)[0].item()
accepted_tokens.append(new_token)
break
if accepted_tokens[-1] == eos_token:
break
return accepted_tokens, num_accepted, past_kv
def generate_visual(prompt, max_tokens=50, gamma=15, confidence_threshold=0.5):
# Prepare input
messages = [{"role": "user", "content": prompt}]
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
eos_token = tokenizer.eos_token_id
im_end_token = tokenizer.convert_tokens_to_ids("<|im_end|>")
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
result = inputs["input_ids"].clone()
draft_kv = None
verify_kv = None
total_drafted = 0
total_accepted = 0
steps = []
# Track the clean output tokens (only accepted/resampled)
clean_output_tokens = []
all_tokens = []
# Metadata for ALL tokens: 'accepted', 'rejected', or 'resampled'
all_token_metadata = []
def build_html():
html = "<div style='font-family: monospace;'>"
# Clean final output box
html += f"<div style='margin-bottom: 20px; padding: 10px; background: transparent; border: 2px solid white; border-radius: 5px;'>"
html += f"<b>Final Output (Clean):</b><br/>"
if clean_output_tokens:
clean_text = tokenizer.decode(clean_output_tokens)
html += clean_text
html += "</div>"
# Detailed output box
html += f"<div style='margin-bottom: 20px; padding: 10px; background: transparent; border: 2px solid white; border-radius: 5px;'>"
html += f"<b>Detailed Output (All Tokens):</b><br/>"
if all_tokens:
for i, token_id in enumerate(all_tokens):
token_text = tokenizer.decode([token_id])
token_display = token_text.replace("<", "<").replace(">", ">")
if i < len(all_token_metadata):
if all_token_metadata[i] == 'accepted':
html += f"<span style='background: #66CC66; padding: 2px 4px; margin: 1px; border-radius: 3px;'>{token_display}</span>"
elif all_token_metadata[i] == 'resampled':
html += f"<span style='background: #5AADCC; padding: 2px 4px; margin: 1px; border-radius: 3px;'>{token_display}</span>"
elif all_token_metadata[i] == 'rejected':
html += f"<span style='background: #FF8B9A; padding: 2px 4px; margin: 1px; text-decoration: line-through; border-radius: 3px;'>{token_display}</span>"
else:
html += token_display
html += "</div>"
# Acceptance rate
if total_drafted > 0:
html += f"<div style='margin-bottom: 20px; padding: 10px; background: transparent; border: 2px solid white; border-radius: 5px;'>"
html += f"<b>Acceptance Rate:</b> {total_accepted}/{total_drafted} = {total_accepted/total_drafted*100:.1f}%"
html += "</div>"
# Decoding steps
html += "<div style='margin-bottom: 10px;'><b>Decoding Steps:</b></div>"
for i, step in enumerate(steps):
html += f"<div style='margin: 10px 0; padding: 10px; border: 1px solid #ccc; border-radius: 5px;'>"
html += f"<b>Step {i+1}:</b> "
for j, token in enumerate(step["drafted"]):
token_display = token.replace("<", "<").replace(">", ">")
if j < step["accepted"]:
html += f"<span style='background: #66CC66; padding: 2px 4px; margin: 2px; border-radius: 3px;'>{token_display}</span>"
else:
html += f"<span style='background: #FF8B9A; padding: 2px 4px; margin: 2px; text-decoration: line-through; border-radius: 3px;'>{token_display}</span>"
if step["resampled"]:
resampled_display = step["resampled"].replace("<", "<").replace(">", ">")
html += f" β <span style='background: #5AADCC; padding: 2px 4px; border-radius: 3px;'>{resampled_display}</span>"
html += "</div>"
html += "</div>"
return html
while result.shape[-1] - inputs["input_ids"].shape[-1] < max_tokens:
# Draft
drafted, drafted_probs, draft_kv = draft(result, gamma, confidence_threshold, eos_token, draft_kv)
drafted_token_ids = drafted[0, -len(drafted_probs):].tolist()
drafted_tokens = [tokenizer.decode([t]) for t in drafted_token_ids]
clean_output_tokens.extend(drafted_token_ids)
all_tokens.extend(drafted_token_ids)
all_token_metadata.extend(['accepted'] * len(drafted_token_ids))
temp_step = {
"drafted": drafted_tokens,
"accepted": len(drafted_tokens),
"resampled": None
}
steps.append(temp_step)
total_drafted += len(drafted_probs)
yield build_html()
# Verify
accepted_tokens, num_accepted, verify_kv = verify(drafted, drafted_probs, eos_token, verify_kv)
total_accepted += num_accepted
clean_output_tokens = clean_output_tokens[:-len(drafted_token_ids)]
all_token_metadata = all_token_metadata[:-len(drafted_token_ids)]
for i, token_id in enumerate(drafted_token_ids):
if i < num_accepted:
all_token_metadata.append('accepted')
else:
all_token_metadata.append('rejected')
clean_output_tokens.extend(accepted_tokens)
if num_accepted < len(accepted_tokens):
all_tokens.append(accepted_tokens[-1])
all_token_metadata.append('resampled')
steps[-1] = {
"drafted": drafted_tokens,
"accepted": num_accepted,
"resampled": tokenizer.decode([accepted_tokens[-1]]) if num_accepted < len(accepted_tokens) else None
}
yield build_html()
valid_len = result.shape[-1] + num_accepted
result = torch.cat([result, torch.tensor([accepted_tokens], device=device)], dim=-1)
if draft_kv is not None:
draft_kv.crop(max_length=valid_len)
if verify_kv is not None:
verify_kv.crop(max_length=valid_len)
if eos_token in accepted_tokens or im_end_token in accepted_tokens:
break
yield build_html()
demo = gr.Interface(
fn=generate_visual,
inputs=[
gr.Textbox(label="Prompt", value="What is a deal flow in a VC fund?", lines=3),
gr.Slider(minimum=10, maximum=100, value=50, step=10, label="Max Tokens"),
gr.Slider(minimum=1, maximum=30, value=15, step=1, label="Gamma (draft lookahead)"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05, label="Confidence Threshold")
],
outputs=gr.HTML(label="Speculative Decoding Visualization"),
title="π Speculative Decoding Demo",
description="""
**Speculative Decoding Visualization** using Qwen2.5-Coder models
- **Draft Model**: Qwen2.5-Coder-0.5B-Instruct (fast)
- **Verify Model**: Qwen2.5-Coder-3B-Instruct (accurate)
**Color Legend:**
- π’ Green = Accepted tokens from draft model
- π΄ Red = Rejected tokens (with strikethrough)
- π΅ Blue = Resampled tokens from verify model
**Watch the tokens stream in real-time!** Draft tokens appear immediately, then get accepted or rejected by the verify model.
""",
examples=[
["What is the capital of France?", 80, 15, 0.5],
["Complete the python function \n def fibonacci(n):", 50, 15, 0.5],
["Explain the concept of attention in transformers", 60, 10, 0.6]
]
)
if __name__ == "__main__":
demo.launch()
|