File size: 24,304 Bytes
517c236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.

import os

gradio_tmp_dir = os.path.join(
    os.path.dirname(os.path.abspath(__file__)), "gradio_cache"
)
os.makedirs(gradio_tmp_dir, exist_ok=True)
os.environ["GRADIO_TEMP_DIR"] = gradio_tmp_dir

import shutil
import uuid
import xml.etree.ElementTree as ET
from pathlib import Path
from typing import Any, Dict, Tuple

import gradio as gr
import pandas as pd
import yaml
from app_style import custom_theme, lighting_css

try:
    from embodied_gen.utils.gpt_clients import GPT_CLIENT as gpt_client

    gpt_client.check_connection()
    GPT_AVAILABLE = True
except Exception as e:
    gpt_client = None
    GPT_AVAILABLE = False
    print(
        f"Warning: GPT client could not be initialized. Search will be disabled. Error: {e}"
    )


# --- Configuration & Data Loading ---
VERSION = "v0.1.5"
RUNNING_MODE = "hf_remote"  # local or hf_remote
CSV_FILE = "dataset_index.csv"
import spaces
@spaces.GPU
def fake_gpu_init():
    pass
fake_gpu_init()

if RUNNING_MODE == "local":
    DATA_ROOT = "/horizon-bucket/robot_lab/datasets/embodiedgen/assets"
elif RUNNING_MODE == "hf_remote":
    from huggingface_hub import snapshot_download

    snapshot_download(
        repo_id="HorizonRobotics/EmbodiedGenData",
        repo_type="dataset",
        allow_patterns=f"dataset/**",
        local_dir="EmbodiedGenData",
        local_dir_use_symlinks=False,
    )
    DATA_ROOT = "EmbodiedGenData/dataset"
else:
    raise ValueError(
        f"Unknown RUNNING_MODE: {RUNNING_MODE}, must be 'local' or 'hf_remote'."
    )

csv_path = os.path.join(DATA_ROOT, CSV_FILE)
df = pd.read_csv(csv_path)
TMP_DIR = os.path.join(
    os.path.dirname(os.path.abspath(__file__)), "sessions/asset_viewer"
)
os.makedirs(TMP_DIR, exist_ok=True)


# --- Custom CSS for Styling ---
css = """
.gradio-container .gradio-group { box-shadow: 0 2px 4px rgba(0,0,0,0.05) !important; }
#asset-gallery { border: 1px solid #E5E7EB; border-radius: 8px; padding: 8px; background-color: #F9FAFB; }
"""

lighting_css = """
<style>
#visual_mesh canvas { filter: brightness(2.2) !important; }
#collision_mesh_a canvas, #collision_mesh_b canvas { filter: brightness(1.0) !important; }
</style>
"""

_prev_temp = {}


def _unique_path(
    src_path: str | None, session_hash: str, kind: str
) -> str | None:
    """Link/copy src to GRADIO_TEMP_DIR/session_hash with random filename. Always return a fresh URL."""
    if not src_path:
        return None
    tmp_root = (
        Path(os.environ.get("GRADIO_TEMP_DIR", "/tmp"))
        / "model3d-cache"
        / session_hash
    )
    tmp_root.mkdir(parents=True, exist_ok=True)

    # rolling cleanup for same kind
    prev = _prev_temp.get(session_hash, {})
    old = prev.get(kind)
    if old and old.exists():
        old.unlink()

    ext = Path(src_path).suffix or ".glb"
    dst = tmp_root / f"{kind}-{uuid.uuid4().hex}{ext}"
    shutil.copy2(src_path, dst)

    prev[kind] = dst
    _prev_temp[session_hash] = prev
    return str(dst)


# --- Helper Functions (data filtering) ---
def get_primary_categories():
    return sorted(df["primary_category"].dropna().unique())


def get_secondary_categories(primary):
    if not primary:
        return []
    return sorted(
        df[df["primary_category"] == primary]["secondary_category"]
        .dropna()
        .unique()
    )


def get_categories(primary, secondary):
    if not primary or not secondary:
        return []
    return sorted(
        df[
            (df["primary_category"] == primary)
            & (df["secondary_category"] == secondary)
        ]["category"]
        .dropna()
        .unique()
    )


def get_assets(primary, secondary, category):
    if not primary or not secondary:
        return [], gr.update(interactive=False), pd.DataFrame()

    subset = df[
        (df["primary_category"] == primary)
        & (df["secondary_category"] == secondary)
    ]
    if category:
        subset = subset[subset["category"] == category]

    items = []
    for row in subset.itertuples():
        asset_dir = os.path.join(DATA_ROOT, row.asset_dir)
        video_path = None
        if pd.notna(asset_dir) and os.path.exists(asset_dir):
            for f in os.listdir(asset_dir):
                if f.lower().endswith(".mp4"):
                    video_path = os.path.join(asset_dir, f)
                    break
        items.append(
            video_path
            if video_path
            else "https://dummyimage.com/512x512/cccccc/000000&text=No+Preview"
        )

    return items, gr.update(interactive=True), subset


def search_assets(query: str, top_k: int):
    if not GPT_AVAILABLE or not query:
        gr.Warning(
            "GPT client is not available or query is empty. Cannot perform search."
        )
        return [], gr.update(interactive=False), pd.DataFrame()

    gr.Info(f"Searching for assets matching: '{query}'...")

    keywords = query.split()
    keyword_filter = pd.Series([False] * len(df), index=df.index)
    for keyword in keywords:
        keyword_filter |= df['description'].str.contains(
            keyword, case=False, na=False
        )

    candidates = df[keyword_filter]

    if len(candidates) > 100:
        candidates = candidates.head(100)

    if candidates.empty:
        gr.Warning("No assets found matching the keywords.")
        return [], gr.update(interactive=True), pd.DataFrame()

    try:
        descriptions = [
            f"{idx}: {desc}" for idx, desc in candidates['description'].items()
        ]
        descriptions_text = "\n".join(descriptions)

        prompt = f"""
        A user is searching for 3D assets with the query: "{query}".
        Below is a list of available assets, each with an ID and a description.
        Please evaluate how well each asset description matches the user's query and rate them on a scale from 0 to 10, where 10 is a perfect match.

        Your task is to return a list of the top {top_k} asset IDs, sorted from the most relevant to the least relevant.
        The output format must be a simple comma-separated list of IDs, for example: "123,45,678". Do not add any other text.

        Asset Descriptions:
        {descriptions_text}

        User Query: "{query}"

        Top {top_k} sorted asset IDs:
        """
        response = gpt_client.query(prompt)
        sorted_ids_str = response.strip().split(',')
        sorted_ids = [
            int(id_str.strip())
            for id_str in sorted_ids_str
            if id_str.strip().isdigit()
        ]
        top_assets = df.loc[sorted_ids].head(top_k)
    except Exception as e:
        gr.Error(f"An error occurred while using GPT for ranking: {e}")
        top_assets = candidates.head(top_k)

    items = []
    for row in top_assets.itertuples():
        asset_dir = os.path.join(DATA_ROOT, row.asset_dir)
        video_path = None
        if pd.notna(row.asset_dir) and os.path.exists(asset_dir):
            for f in os.listdir(asset_dir):
                if f.lower().endswith(".mp4"):
                    video_path = os.path.join(asset_dir, f)
                    break
        items.append(
            video_path
            if video_path
            else "https://dummyimage.com/512x512/cccccc/000000&text=No+Preview"
        )

    gr.Info(f"Found {len(items)} assets.")
    return items, gr.update(interactive=True), top_assets


# --- Mesh extraction ---
def _extract_mesh_paths(row) -> Tuple[str | None, str | None, str]:
    desc = row["description"]
    urdf_path = os.path.join(DATA_ROOT, row["urdf_path"])
    asset_dir = os.path.join(DATA_ROOT, row["asset_dir"])
    visual_mesh_path = None
    collision_mesh_path = None

    if pd.notna(urdf_path) and os.path.exists(urdf_path):
        try:
            tree = ET.parse(urdf_path)
            root = tree.getroot()

            visual_mesh_element = root.find('.//visual/geometry/mesh')
            if visual_mesh_element is not None:
                visual_mesh_filename = visual_mesh_element.get('filename')
                if visual_mesh_filename:
                    glb_filename = (
                        os.path.splitext(visual_mesh_filename)[0] + ".glb"
                    )
                    potential_path = os.path.join(asset_dir, glb_filename)
                    if os.path.exists(potential_path):
                        visual_mesh_path = potential_path

            collision_mesh_element = root.find('.//collision/geometry/mesh')
            if collision_mesh_element is not None:
                collision_mesh_filename = collision_mesh_element.get(
                    'filename'
                )
                if collision_mesh_filename:
                    potential_collision_path = os.path.join(
                        asset_dir, collision_mesh_filename
                    )
                    if os.path.exists(potential_collision_path):
                        collision_mesh_path = potential_collision_path

        except ET.ParseError:
            desc = f"Error: Failed to parse URDF at {urdf_path}. {desc}"
        except Exception as e:
            desc = f"An error occurred while processing URDF: {str(e)}. {desc}"

    return visual_mesh_path, collision_mesh_path, desc


def show_asset_from_gallery(
    evt: gr.SelectData,
    primary: str,
    secondary: str,
    category: str,
    search_query: str,
    gallery_df: pd.DataFrame,
):
    """Parse the selected asset and return raw paths + metadata."""
    index = evt.index

    if search_query and gallery_df is not None and not gallery_df.empty:
        subset = gallery_df
    else:
        if not primary or not secondary:
            return (
                None,  # visual_path
                None,  # collision_path
                "Error: Primary or secondary category not selected.",
                None,  # asset_dir
                None,  # urdf_path
                "N/A",
                "N/A",
                "N/A",
                "N/A",
            )

        subset = df[
            (df["primary_category"] == primary)
            & (df["secondary_category"] == secondary)
        ]
        if category:
            subset = subset[subset["category"] == category]

    if subset.empty or index >= len(subset):
        return (
            None,
            None,
            "Error: Selection index is out of bounds or data is missing.",
            None,
            None,
            "N/A",
            "N/A",
            "N/A",
            "N/A",
        )

    row = subset.iloc[index]
    visual_path, collision_path, desc = _extract_mesh_paths(row)

    urdf_path = os.path.join(DATA_ROOT, row["urdf_path"])
    asset_dir = os.path.join(DATA_ROOT, row["asset_dir"])

    # read extra info
    est_type_text = "N/A"
    est_height_text = "N/A"
    est_mass_text = "N/A"
    est_mu_text = "N/A"

    if pd.notna(urdf_path) and os.path.exists(urdf_path):
        try:
            tree = ET.parse(urdf_path)
            root = tree.getroot()
            category_elem = root.find('.//extra_info/category')
            if category_elem is not None and category_elem.text:
                est_type_text = category_elem.text.strip()
            height_elem = root.find('.//extra_info/real_height')
            if height_elem is not None and height_elem.text:
                est_height_text = height_elem.text.strip()
            mass_elem = root.find('.//extra_info/min_mass')
            if mass_elem is not None and mass_elem.text:
                est_mass_text = mass_elem.text.strip()
            mu_elem = root.find('.//collision/gazebo/mu2')
            if mu_elem is not None and mu_elem.text:
                est_mu_text = mu_elem.text.strip()
        except Exception:
            pass

    return (
        visual_path,
        collision_path,
        desc,
        asset_dir,
        urdf_path,
        est_type_text,
        est_height_text,
        est_mass_text,
        est_mu_text,
    )


def render_meshes(
    visual_path: str | None,
    collision_path: str | None,
    switch_viewer: bool,
    req: gr.Request,
):
    session_hash = getattr(req, "session_hash", "default")

    if switch_viewer:
        yield (
            gr.update(value=None),
            gr.update(value=None, visible=False),
            gr.update(value=None, visible=True),
            True,
        )
    else:
        yield (
            gr.update(value=None),
            gr.update(value=None, visible=True),
            gr.update(value=None, visible=False),
            True,
        )

    visual_unique = (
        _unique_path(visual_path, session_hash, "visual")
        if visual_path
        else None
    )
    collision_unique = (
        _unique_path(collision_path, session_hash, "collision")
        if collision_path
        else None
    )

    if switch_viewer:
        yield (
            gr.update(value=visual_unique),
            gr.update(value=None, visible=False),
            gr.update(value=collision_unique, visible=True),
            False,
        )
    else:
        yield (
            gr.update(value=visual_unique),
            gr.update(value=collision_unique, visible=True),
            gr.update(value=None, visible=False),
            True,
        )


def create_asset_zip(asset_dir: str, req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)

    asset_folder_name = os.path.basename(os.path.normpath(asset_dir))
    zip_path_base = os.path.join(user_dir, asset_folder_name)

    archive_path = shutil.make_archive(
        base_name=zip_path_base, format='zip', root_dir=asset_dir
    )
    gr.Info(f"βœ… {asset_folder_name}.zip is ready and can be downloaded.")

    return archive_path


def start_session(req: gr.Request) -> None:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)


def end_session(req: gr.Request) -> None:
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    if os.path.exists(user_dir):
        shutil.rmtree(user_dir)


# --- UI ---
with gr.Blocks(
    theme=custom_theme,
    css=css,
    title="3D Asset Library",
) as demo:
    # gr.HTML(lighting_css, visible=False)
    gr.Markdown(
        """
        ## πŸ›οΈ ***EmbodiedGen***: 3D Asset Gallery Explorer

        **πŸ”– Version**: {VERSION}
        <p style="display: flex; gap: 10px; flex-wrap: nowrap;">
            <a href="https://horizonrobotics.github.io/EmbodiedGen">
                <img alt="πŸ“– Documentation" src="https://img.shields.io/badge/πŸ“–-Documentation-blue">
            </a>
            <a href="https://arxiv.org/abs/2506.10600">
                <img alt="πŸ“„ arXiv" src="https://img.shields.io/badge/πŸ“„-arXiv-b31b1b">
            </a>
            <a href="https://github.com/HorizonRobotics/EmbodiedGen">
                <img alt="πŸ’» GitHub" src="https://img.shields.io/badge/GitHub-000000?logo=github">
            </a>
            <a href="https://www.youtube.com/watch?v=rG4odybuJRk">
                <img alt="πŸŽ₯ Video" src="https://img.shields.io/badge/πŸŽ₯-Video-red">
            </a>
        </p>

        Browse and visualize the EmbodiedGen 3D asset database. Select categories to filter and click on a preview to load the model.

        """.format(
            VERSION=VERSION
        ),
        elem_classes=["header"],
    )

    primary_list = get_primary_categories()
    primary_val = primary_list[0] if primary_list else None
    secondary_list = get_secondary_categories(primary_val)
    secondary_val = secondary_list[0] if secondary_list else None
    category_list = get_categories(primary_val, secondary_val)
    category_val = category_list[0] if category_list else None
    asset_folder = gr.State(value=None)
    gallery_df_state = gr.State()

    switch_viewer_state = gr.State(value=False)

    with gr.Row(equal_height=False):
        with gr.Column(scale=1, min_width=350):
            with gr.Group():
                gr.Markdown("### Search Asset with Descriptions")
                search_box = gr.Textbox(
                    label="πŸ”Ž Enter your search query",
                    placeholder="e.g., 'a red chair with four legs'",
                    interactive=GPT_AVAILABLE,
                )
                top_k_slider = gr.Slider(
                    minimum=1,
                    maximum=50,
                    value=10,
                    step=1,
                    label="Number of results",
                    interactive=GPT_AVAILABLE,
                )
                search_button = gr.Button(
                    "Search", variant="primary", interactive=GPT_AVAILABLE
                )
                if not GPT_AVAILABLE:
                    gr.Markdown(
                        "<p style='color: #ff4b4b;'>⚠️ GPT client not available. Search is disabled.</p>"
                    )

            with gr.Group():
                gr.Markdown("### Select Asset Category")
                primary = gr.Dropdown(
                    choices=primary_list,
                    value=primary_val,
                    label="πŸ—‚οΈ Primary Category",
                )
                secondary = gr.Dropdown(
                    choices=secondary_list,
                    value=secondary_val,
                    label="πŸ“‚ Secondary Category",
                )
                category = gr.Dropdown(
                    choices=category_list,
                    value=category_val,
                    label="🏷️ Asset Category",
                )

            with gr.Group():
                initial_assets, _, initial_df = get_assets(
                    primary_val, secondary_val, category_val
                )
                gallery = gr.Gallery(
                    value=initial_assets,
                    label="πŸ–ΌοΈ Asset Previews",
                    columns=3,
                    height="auto",
                    allow_preview=True,
                    elem_id="asset-gallery",
                    interactive=bool(category_val),
                )

        with gr.Column(scale=2, min_width=500):
            with gr.Group():
                with gr.Tabs():
                    with gr.TabItem("Visual Mesh") as t1:
                        viewer = gr.Model3D(
                            label="🧊 3D Model Viewer",
                            height=500,
                            clear_color=[0.95, 0.95, 0.95],
                            elem_id="visual_mesh",
                        )
                    with gr.TabItem("Collision Mesh") as t2:
                        collision_viewer_a = gr.Model3D(
                            label="🧊 Collision Mesh",
                            height=500,
                            clear_color=[0.95, 0.95, 0.95],
                            elem_id="collision_mesh_a",
                            visible=True,
                        )
                        collision_viewer_b = gr.Model3D(
                            label="🧊 Collision Mesh",
                            height=500,
                            clear_color=[0.95, 0.95, 0.95],
                            elem_id="collision_mesh_b",
                            visible=False,
                        )

                t1.select(
                    fn=lambda: None,
                    js="() => { window.dispatchEvent(new Event('resize')); }",
                )
                t2.select(
                    fn=lambda: None,
                    js="() => { window.dispatchEvent(new Event('resize')); }",
                )

                with gr.Row():
                    est_type_text = gr.Textbox(
                        label="Asset category", interactive=False
                    )
                    est_height_text = gr.Textbox(
                        label="Real height(.m)", interactive=False
                    )
                    est_mass_text = gr.Textbox(
                        label="Mass(.kg)", interactive=False
                    )
                    est_mu_text = gr.Textbox(
                        label="Friction coefficient", interactive=False
                    )
                with gr.Row():
                    desc_box = gr.Textbox(
                        label="πŸ“ Asset Description", interactive=False
                    )
                with gr.Accordion(label="Asset Details", open=False):
                    urdf_file = gr.Textbox(
                        label="URDF File Path", interactive=False, lines=2
                    )
                with gr.Row():
                    extract_btn = gr.Button(
                        "πŸ“₯ Extract Asset",
                        variant="primary",
                        interactive=False,
                    )
                    download_btn = gr.DownloadButton(
                        label="⬇️ Download Asset",
                        variant="primary",
                        interactive=False,
                    )

    search_button.click(
        fn=search_assets,
        inputs=[search_box, top_k_slider],
        outputs=[gallery, gallery, gallery_df_state],
    )
    search_box.submit(
        fn=search_assets,
        inputs=[search_box, top_k_slider],
        outputs=[gallery, gallery, gallery_df_state],
    )

    def update_on_primary_change(p):
        s_choices = get_secondary_categories(p)
        initial_assets, gallery_update, initial_df = get_assets(p, None, None)
        return (
            gr.update(choices=s_choices, value=None),
            gr.update(choices=[], value=None),
            initial_assets,
            gallery_update,
            initial_df,
        )

    def update_on_secondary_change(p, s):
        c_choices = get_categories(p, s)
        asset_previews, gallery_update, gallery_df = get_assets(p, s, None)
        return (
            gr.update(choices=c_choices, value=None),
            asset_previews,
            gallery_update,
            gallery_df,
        )

    def update_assets(p, s, c):
        asset_previews, gallery_update, gallery_df = get_assets(p, s, c)
        return asset_previews, gallery_update, gallery_df

    primary.change(
        fn=update_on_primary_change,
        inputs=[primary],
        outputs=[secondary, category, gallery, gallery, gallery_df_state],
    )
    secondary.change(
        fn=update_on_secondary_change,
        inputs=[primary, secondary],
        outputs=[category, gallery, gallery, gallery_df_state],
    )
    category.change(
        fn=update_assets,
        inputs=[primary, secondary, category],
        outputs=[gallery, gallery, gallery_df_state],
    )

    gallery.select(
        fn=show_asset_from_gallery,
        inputs=[primary, secondary, category, search_box, gallery_df_state],
        outputs=[
            (visual_path_state := gr.State()),
            (collision_path_state := gr.State()),
            desc_box,
            asset_folder,
            urdf_file,
            est_type_text,
            est_height_text,
            est_mass_text,
            est_mu_text,
        ],
    ).then(
        fn=render_meshes,
        inputs=[visual_path_state, collision_path_state, switch_viewer_state],
        outputs=[
            viewer,
            collision_viewer_a,
            collision_viewer_b,
            switch_viewer_state,
        ],
    ).success(
        lambda: (gr.Button(interactive=True), gr.Button(interactive=False)),
        outputs=[extract_btn, download_btn],
    )

    extract_btn.click(
        fn=create_asset_zip, inputs=[asset_folder], outputs=[download_btn]
    ).success(fn=lambda: gr.update(interactive=True), outputs=download_btn)

    demo.load(start_session)
    demo.unload(end_session)


if __name__ == "__main__":
    demo.launch()