Spaces:
Running
on
Zero
Running
on
Zero
| # Project EmbodiedGen | |
| # | |
| # Copyright (c) 2025 Horizon Robotics. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or | |
| # implied. See the License for the specific language governing | |
| # permissions and limitations under the License. | |
| import os | |
| gradio_tmp_dir = os.path.join( | |
| os.path.dirname(os.path.abspath(__file__)), "gradio_cache" | |
| ) | |
| os.makedirs(gradio_tmp_dir, exist_ok=True) | |
| os.environ["GRADIO_TEMP_DIR"] = gradio_tmp_dir | |
| import shutil | |
| import uuid | |
| import xml.etree.ElementTree as ET | |
| from pathlib import Path | |
| from typing import Any, Dict, Tuple | |
| import gradio as gr | |
| import pandas as pd | |
| import yaml | |
| from app_style import custom_theme, lighting_css | |
| try: | |
| from embodied_gen.utils.gpt_clients import GPT_CLIENT as gpt_client | |
| gpt_client.check_connection() | |
| GPT_AVAILABLE = True | |
| except Exception as e: | |
| gpt_client = None | |
| GPT_AVAILABLE = False | |
| print( | |
| f"Warning: GPT client could not be initialized. Search will be disabled. Error: {e}" | |
| ) | |
| # --- Configuration & Data Loading --- | |
| VERSION = "v0.1.5" | |
| RUNNING_MODE = "hf_remote" # local or hf_remote | |
| CSV_FILE = "dataset_index.csv" | |
| import spaces | |
| def fake_gpu_init(): | |
| pass | |
| fake_gpu_init() | |
| if RUNNING_MODE == "local": | |
| DATA_ROOT = "/horizon-bucket/robot_lab/datasets/embodiedgen/assets" | |
| elif RUNNING_MODE == "hf_remote": | |
| from huggingface_hub import snapshot_download | |
| snapshot_download( | |
| repo_id="HorizonRobotics/EmbodiedGenData", | |
| repo_type="dataset", | |
| allow_patterns=f"dataset/**", | |
| local_dir="EmbodiedGenData", | |
| local_dir_use_symlinks=False, | |
| ) | |
| DATA_ROOT = "EmbodiedGenData/dataset" | |
| else: | |
| raise ValueError( | |
| f"Unknown RUNNING_MODE: {RUNNING_MODE}, must be 'local' or 'hf_remote'." | |
| ) | |
| csv_path = os.path.join(DATA_ROOT, CSV_FILE) | |
| df = pd.read_csv(csv_path) | |
| TMP_DIR = os.path.join( | |
| os.path.dirname(os.path.abspath(__file__)), "sessions/asset_viewer" | |
| ) | |
| os.makedirs(TMP_DIR, exist_ok=True) | |
| # --- Custom CSS for Styling --- | |
| css = """ | |
| .gradio-container .gradio-group { box-shadow: 0 2px 4px rgba(0,0,0,0.05) !important; } | |
| #asset-gallery { border: 1px solid #E5E7EB; border-radius: 8px; padding: 8px; background-color: #F9FAFB; } | |
| """ | |
| lighting_css = """ | |
| <style> | |
| #visual_mesh canvas { filter: brightness(2.2) !important; } | |
| #collision_mesh_a canvas, #collision_mesh_b canvas { filter: brightness(1.0) !important; } | |
| </style> | |
| """ | |
| _prev_temp = {} | |
| def _unique_path( | |
| src_path: str | None, session_hash: str, kind: str | |
| ) -> str | None: | |
| """Link/copy src to GRADIO_TEMP_DIR/session_hash with random filename. Always return a fresh URL.""" | |
| if not src_path: | |
| return None | |
| tmp_root = ( | |
| Path(os.environ.get("GRADIO_TEMP_DIR", "/tmp")) | |
| / "model3d-cache" | |
| / session_hash | |
| ) | |
| tmp_root.mkdir(parents=True, exist_ok=True) | |
| # rolling cleanup for same kind | |
| prev = _prev_temp.get(session_hash, {}) | |
| old = prev.get(kind) | |
| if old and old.exists(): | |
| old.unlink() | |
| ext = Path(src_path).suffix or ".glb" | |
| dst = tmp_root / f"{kind}-{uuid.uuid4().hex}{ext}" | |
| shutil.copy2(src_path, dst) | |
| prev[kind] = dst | |
| _prev_temp[session_hash] = prev | |
| return str(dst) | |
| # --- Helper Functions (data filtering) --- | |
| def get_primary_categories(): | |
| return sorted(df["primary_category"].dropna().unique()) | |
| def get_secondary_categories(primary): | |
| if not primary: | |
| return [] | |
| return sorted( | |
| df[df["primary_category"] == primary]["secondary_category"] | |
| .dropna() | |
| .unique() | |
| ) | |
| def get_categories(primary, secondary): | |
| if not primary or not secondary: | |
| return [] | |
| return sorted( | |
| df[ | |
| (df["primary_category"] == primary) | |
| & (df["secondary_category"] == secondary) | |
| ]["category"] | |
| .dropna() | |
| .unique() | |
| ) | |
| def get_assets(primary, secondary, category): | |
| if not primary or not secondary: | |
| return [], gr.update(interactive=False), pd.DataFrame() | |
| subset = df[ | |
| (df["primary_category"] == primary) | |
| & (df["secondary_category"] == secondary) | |
| ] | |
| if category: | |
| subset = subset[subset["category"] == category] | |
| items = [] | |
| for row in subset.itertuples(): | |
| asset_dir = os.path.join(DATA_ROOT, row.asset_dir) | |
| video_path = None | |
| if pd.notna(asset_dir) and os.path.exists(asset_dir): | |
| for f in os.listdir(asset_dir): | |
| if f.lower().endswith(".mp4"): | |
| video_path = os.path.join(asset_dir, f) | |
| break | |
| items.append( | |
| video_path | |
| if video_path | |
| else "https://dummyimage.com/512x512/cccccc/000000&text=No+Preview" | |
| ) | |
| return items, gr.update(interactive=True), subset | |
| def search_assets(query: str, top_k: int): | |
| if not GPT_AVAILABLE or not query: | |
| gr.Warning( | |
| "GPT client is not available or query is empty. Cannot perform search." | |
| ) | |
| return [], gr.update(interactive=False), pd.DataFrame() | |
| gr.Info(f"Searching for assets matching: '{query}'...") | |
| keywords = query.split() | |
| keyword_filter = pd.Series([False] * len(df), index=df.index) | |
| for keyword in keywords: | |
| keyword_filter |= df['description'].str.contains( | |
| keyword, case=False, na=False | |
| ) | |
| candidates = df[keyword_filter] | |
| if len(candidates) > 100: | |
| candidates = candidates.head(100) | |
| if candidates.empty: | |
| gr.Warning("No assets found matching the keywords.") | |
| return [], gr.update(interactive=True), pd.DataFrame() | |
| try: | |
| descriptions = [ | |
| f"{idx}: {desc}" for idx, desc in candidates['description'].items() | |
| ] | |
| descriptions_text = "\n".join(descriptions) | |
| prompt = f""" | |
| A user is searching for 3D assets with the query: "{query}". | |
| Below is a list of available assets, each with an ID and a description. | |
| Please evaluate how well each asset description matches the user's query and rate them on a scale from 0 to 10, where 10 is a perfect match. | |
| Your task is to return a list of the top {top_k} asset IDs, sorted from the most relevant to the least relevant. | |
| The output format must be a simple comma-separated list of IDs, for example: "123,45,678". Do not add any other text. | |
| Asset Descriptions: | |
| {descriptions_text} | |
| User Query: "{query}" | |
| Top {top_k} sorted asset IDs: | |
| """ | |
| response = gpt_client.query(prompt) | |
| sorted_ids_str = response.strip().split(',') | |
| sorted_ids = [ | |
| int(id_str.strip()) | |
| for id_str in sorted_ids_str | |
| if id_str.strip().isdigit() | |
| ] | |
| top_assets = df.loc[sorted_ids].head(top_k) | |
| except Exception as e: | |
| gr.Error(f"An error occurred while using GPT for ranking: {e}") | |
| top_assets = candidates.head(top_k) | |
| items = [] | |
| for row in top_assets.itertuples(): | |
| asset_dir = os.path.join(DATA_ROOT, row.asset_dir) | |
| video_path = None | |
| if pd.notna(row.asset_dir) and os.path.exists(asset_dir): | |
| for f in os.listdir(asset_dir): | |
| if f.lower().endswith(".mp4"): | |
| video_path = os.path.join(asset_dir, f) | |
| break | |
| items.append( | |
| video_path | |
| if video_path | |
| else "https://dummyimage.com/512x512/cccccc/000000&text=No+Preview" | |
| ) | |
| gr.Info(f"Found {len(items)} assets.") | |
| return items, gr.update(interactive=True), top_assets | |
| # --- Mesh extraction --- | |
| def _extract_mesh_paths(row) -> Tuple[str | None, str | None, str]: | |
| desc = row["description"] | |
| urdf_path = os.path.join(DATA_ROOT, row["urdf_path"]) | |
| asset_dir = os.path.join(DATA_ROOT, row["asset_dir"]) | |
| visual_mesh_path = None | |
| collision_mesh_path = None | |
| if pd.notna(urdf_path) and os.path.exists(urdf_path): | |
| try: | |
| tree = ET.parse(urdf_path) | |
| root = tree.getroot() | |
| visual_mesh_element = root.find('.//visual/geometry/mesh') | |
| if visual_mesh_element is not None: | |
| visual_mesh_filename = visual_mesh_element.get('filename') | |
| if visual_mesh_filename: | |
| glb_filename = ( | |
| os.path.splitext(visual_mesh_filename)[0] + ".glb" | |
| ) | |
| potential_path = os.path.join(asset_dir, glb_filename) | |
| if os.path.exists(potential_path): | |
| visual_mesh_path = potential_path | |
| collision_mesh_element = root.find('.//collision/geometry/mesh') | |
| if collision_mesh_element is not None: | |
| collision_mesh_filename = collision_mesh_element.get( | |
| 'filename' | |
| ) | |
| if collision_mesh_filename: | |
| potential_collision_path = os.path.join( | |
| asset_dir, collision_mesh_filename | |
| ) | |
| if os.path.exists(potential_collision_path): | |
| collision_mesh_path = potential_collision_path | |
| except ET.ParseError: | |
| desc = f"Error: Failed to parse URDF at {urdf_path}. {desc}" | |
| except Exception as e: | |
| desc = f"An error occurred while processing URDF: {str(e)}. {desc}" | |
| return visual_mesh_path, collision_mesh_path, desc | |
| def show_asset_from_gallery( | |
| evt: gr.SelectData, | |
| primary: str, | |
| secondary: str, | |
| category: str, | |
| search_query: str, | |
| gallery_df: pd.DataFrame, | |
| ): | |
| """Parse the selected asset and return raw paths + metadata.""" | |
| index = evt.index | |
| if search_query and gallery_df is not None and not gallery_df.empty: | |
| subset = gallery_df | |
| else: | |
| if not primary or not secondary: | |
| return ( | |
| None, # visual_path | |
| None, # collision_path | |
| "Error: Primary or secondary category not selected.", | |
| None, # asset_dir | |
| None, # urdf_path | |
| "N/A", | |
| "N/A", | |
| "N/A", | |
| "N/A", | |
| ) | |
| subset = df[ | |
| (df["primary_category"] == primary) | |
| & (df["secondary_category"] == secondary) | |
| ] | |
| if category: | |
| subset = subset[subset["category"] == category] | |
| if subset.empty or index >= len(subset): | |
| return ( | |
| None, | |
| None, | |
| "Error: Selection index is out of bounds or data is missing.", | |
| None, | |
| None, | |
| "N/A", | |
| "N/A", | |
| "N/A", | |
| "N/A", | |
| ) | |
| row = subset.iloc[index] | |
| visual_path, collision_path, desc = _extract_mesh_paths(row) | |
| urdf_path = os.path.join(DATA_ROOT, row["urdf_path"]) | |
| asset_dir = os.path.join(DATA_ROOT, row["asset_dir"]) | |
| # read extra info | |
| est_type_text = "N/A" | |
| est_height_text = "N/A" | |
| est_mass_text = "N/A" | |
| est_mu_text = "N/A" | |
| if pd.notna(urdf_path) and os.path.exists(urdf_path): | |
| try: | |
| tree = ET.parse(urdf_path) | |
| root = tree.getroot() | |
| category_elem = root.find('.//extra_info/category') | |
| if category_elem is not None and category_elem.text: | |
| est_type_text = category_elem.text.strip() | |
| height_elem = root.find('.//extra_info/real_height') | |
| if height_elem is not None and height_elem.text: | |
| est_height_text = height_elem.text.strip() | |
| mass_elem = root.find('.//extra_info/min_mass') | |
| if mass_elem is not None and mass_elem.text: | |
| est_mass_text = mass_elem.text.strip() | |
| mu_elem = root.find('.//collision/gazebo/mu2') | |
| if mu_elem is not None and mu_elem.text: | |
| est_mu_text = mu_elem.text.strip() | |
| except Exception: | |
| pass | |
| return ( | |
| visual_path, | |
| collision_path, | |
| desc, | |
| asset_dir, | |
| urdf_path, | |
| est_type_text, | |
| est_height_text, | |
| est_mass_text, | |
| est_mu_text, | |
| ) | |
| def render_meshes( | |
| visual_path: str | None, | |
| collision_path: str | None, | |
| switch_viewer: bool, | |
| req: gr.Request, | |
| ): | |
| session_hash = getattr(req, "session_hash", "default") | |
| if switch_viewer: | |
| yield ( | |
| gr.update(value=None), | |
| gr.update(value=None, visible=False), | |
| gr.update(value=None, visible=True), | |
| True, | |
| ) | |
| else: | |
| yield ( | |
| gr.update(value=None), | |
| gr.update(value=None, visible=True), | |
| gr.update(value=None, visible=False), | |
| True, | |
| ) | |
| visual_unique = ( | |
| _unique_path(visual_path, session_hash, "visual") | |
| if visual_path | |
| else None | |
| ) | |
| collision_unique = ( | |
| _unique_path(collision_path, session_hash, "collision") | |
| if collision_path | |
| else None | |
| ) | |
| if switch_viewer: | |
| yield ( | |
| gr.update(value=visual_unique), | |
| gr.update(value=None, visible=False), | |
| gr.update(value=collision_unique, visible=True), | |
| False, | |
| ) | |
| else: | |
| yield ( | |
| gr.update(value=visual_unique), | |
| gr.update(value=collision_unique, visible=True), | |
| gr.update(value=None, visible=False), | |
| True, | |
| ) | |
| def create_asset_zip(asset_dir: str, req: gr.Request): | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| asset_folder_name = os.path.basename(os.path.normpath(asset_dir)) | |
| zip_path_base = os.path.join(user_dir, asset_folder_name) | |
| archive_path = shutil.make_archive( | |
| base_name=zip_path_base, format='zip', root_dir=asset_dir | |
| ) | |
| gr.Info(f"✅ {asset_folder_name}.zip is ready and can be downloaded.") | |
| return archive_path | |
| def start_session(req: gr.Request) -> None: | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| os.makedirs(user_dir, exist_ok=True) | |
| def end_session(req: gr.Request) -> None: | |
| user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
| if os.path.exists(user_dir): | |
| shutil.rmtree(user_dir) | |
| # --- UI --- | |
| with gr.Blocks( | |
| theme=custom_theme, | |
| css=css, | |
| title="3D Asset Library", | |
| ) as demo: | |
| # gr.HTML(lighting_css, visible=False) | |
| gr.Markdown( | |
| """ | |
| ## 🏛️ ***EmbodiedGen***: 3D Asset Gallery Explorer | |
| **🔖 Version**: {VERSION} | |
| <p style="display: flex; gap: 10px; flex-wrap: nowrap;"> | |
| <a href="https://horizonrobotics.github.io/EmbodiedGen"> | |
| <img alt="📖 Documentation" src="https://img.shields.io/badge/📖-Documentation-blue"> | |
| </a> | |
| <a href="https://arxiv.org/abs/2506.10600"> | |
| <img alt="📄 arXiv" src="https://img.shields.io/badge/📄-arXiv-b31b1b"> | |
| </a> | |
| <a href="https://github.com/HorizonRobotics/EmbodiedGen"> | |
| <img alt="💻 GitHub" src="https://img.shields.io/badge/GitHub-000000?logo=github"> | |
| </a> | |
| <a href="https://www.youtube.com/watch?v=rG4odybuJRk"> | |
| <img alt="🎥 Video" src="https://img.shields.io/badge/🎥-Video-red"> | |
| </a> | |
| </p> | |
| Browse and visualize the EmbodiedGen 3D asset database. Select categories to filter and click on a preview to load the model. | |
| """.format( | |
| VERSION=VERSION | |
| ), | |
| elem_classes=["header"], | |
| ) | |
| primary_list = get_primary_categories() | |
| primary_val = primary_list[0] if primary_list else None | |
| secondary_list = get_secondary_categories(primary_val) | |
| secondary_val = secondary_list[0] if secondary_list else None | |
| category_list = get_categories(primary_val, secondary_val) | |
| category_val = category_list[0] if category_list else None | |
| asset_folder = gr.State(value=None) | |
| gallery_df_state = gr.State() | |
| switch_viewer_state = gr.State(value=False) | |
| with gr.Row(equal_height=False): | |
| with gr.Column(scale=1, min_width=350): | |
| with gr.Group(): | |
| gr.Markdown("### Search Asset with Descriptions") | |
| search_box = gr.Textbox( | |
| label="🔎 Enter your search query", | |
| placeholder="e.g., 'a red chair with four legs'", | |
| interactive=GPT_AVAILABLE, | |
| ) | |
| top_k_slider = gr.Slider( | |
| minimum=1, | |
| maximum=50, | |
| value=10, | |
| step=1, | |
| label="Number of results", | |
| interactive=GPT_AVAILABLE, | |
| ) | |
| search_button = gr.Button( | |
| "Search", variant="primary", interactive=GPT_AVAILABLE | |
| ) | |
| if not GPT_AVAILABLE: | |
| gr.Markdown( | |
| "<p style='color: #ff4b4b;'>⚠️ GPT client not available. Search is disabled.</p>" | |
| ) | |
| with gr.Group(): | |
| gr.Markdown("### Select Asset Category") | |
| primary = gr.Dropdown( | |
| choices=primary_list, | |
| value=primary_val, | |
| label="🗂️ Primary Category", | |
| ) | |
| secondary = gr.Dropdown( | |
| choices=secondary_list, | |
| value=secondary_val, | |
| label="📂 Secondary Category", | |
| ) | |
| category = gr.Dropdown( | |
| choices=category_list, | |
| value=category_val, | |
| label="🏷️ Asset Category", | |
| ) | |
| with gr.Group(): | |
| initial_assets, _, initial_df = get_assets( | |
| primary_val, secondary_val, category_val | |
| ) | |
| gallery = gr.Gallery( | |
| value=initial_assets, | |
| label="🖼️ Asset Previews", | |
| columns=3, | |
| height="auto", | |
| allow_preview=True, | |
| elem_id="asset-gallery", | |
| interactive=bool(category_val), | |
| ) | |
| with gr.Column(scale=2, min_width=500): | |
| with gr.Group(): | |
| with gr.Tabs(): | |
| with gr.TabItem("Visual Mesh") as t1: | |
| viewer = gr.Model3D( | |
| label="🧊 3D Model Viewer", | |
| height=500, | |
| clear_color=[0.95, 0.95, 0.95], | |
| elem_id="visual_mesh", | |
| ) | |
| with gr.TabItem("Collision Mesh") as t2: | |
| collision_viewer_a = gr.Model3D( | |
| label="🧊 Collision Mesh", | |
| height=500, | |
| clear_color=[0.95, 0.95, 0.95], | |
| elem_id="collision_mesh_a", | |
| visible=True, | |
| ) | |
| collision_viewer_b = gr.Model3D( | |
| label="🧊 Collision Mesh", | |
| height=500, | |
| clear_color=[0.95, 0.95, 0.95], | |
| elem_id="collision_mesh_b", | |
| visible=False, | |
| ) | |
| t1.select( | |
| fn=lambda: None, | |
| js="() => { window.dispatchEvent(new Event('resize')); }", | |
| ) | |
| t2.select( | |
| fn=lambda: None, | |
| js="() => { window.dispatchEvent(new Event('resize')); }", | |
| ) | |
| with gr.Row(): | |
| est_type_text = gr.Textbox( | |
| label="Asset category", interactive=False | |
| ) | |
| est_height_text = gr.Textbox( | |
| label="Real height(.m)", interactive=False | |
| ) | |
| est_mass_text = gr.Textbox( | |
| label="Mass(.kg)", interactive=False | |
| ) | |
| est_mu_text = gr.Textbox( | |
| label="Friction coefficient", interactive=False | |
| ) | |
| with gr.Row(): | |
| desc_box = gr.Textbox( | |
| label="📝 Asset Description", interactive=False | |
| ) | |
| with gr.Accordion(label="Asset Details", open=False): | |
| urdf_file = gr.Textbox( | |
| label="URDF File Path", interactive=False, lines=2 | |
| ) | |
| with gr.Row(): | |
| extract_btn = gr.Button( | |
| "📥 Extract Asset", | |
| variant="primary", | |
| interactive=False, | |
| ) | |
| download_btn = gr.DownloadButton( | |
| label="⬇️ Download Asset", | |
| variant="primary", | |
| interactive=False, | |
| ) | |
| search_button.click( | |
| fn=search_assets, | |
| inputs=[search_box, top_k_slider], | |
| outputs=[gallery, gallery, gallery_df_state], | |
| ) | |
| search_box.submit( | |
| fn=search_assets, | |
| inputs=[search_box, top_k_slider], | |
| outputs=[gallery, gallery, gallery_df_state], | |
| ) | |
| def update_on_primary_change(p): | |
| s_choices = get_secondary_categories(p) | |
| initial_assets, gallery_update, initial_df = get_assets(p, None, None) | |
| return ( | |
| gr.update(choices=s_choices, value=None), | |
| gr.update(choices=[], value=None), | |
| initial_assets, | |
| gallery_update, | |
| initial_df, | |
| ) | |
| def update_on_secondary_change(p, s): | |
| c_choices = get_categories(p, s) | |
| asset_previews, gallery_update, gallery_df = get_assets(p, s, None) | |
| return ( | |
| gr.update(choices=c_choices, value=None), | |
| asset_previews, | |
| gallery_update, | |
| gallery_df, | |
| ) | |
| def update_assets(p, s, c): | |
| asset_previews, gallery_update, gallery_df = get_assets(p, s, c) | |
| return asset_previews, gallery_update, gallery_df | |
| primary.change( | |
| fn=update_on_primary_change, | |
| inputs=[primary], | |
| outputs=[secondary, category, gallery, gallery, gallery_df_state], | |
| ) | |
| secondary.change( | |
| fn=update_on_secondary_change, | |
| inputs=[primary, secondary], | |
| outputs=[category, gallery, gallery, gallery_df_state], | |
| ) | |
| category.change( | |
| fn=update_assets, | |
| inputs=[primary, secondary, category], | |
| outputs=[gallery, gallery, gallery_df_state], | |
| ) | |
| gallery.select( | |
| fn=show_asset_from_gallery, | |
| inputs=[primary, secondary, category, search_box, gallery_df_state], | |
| outputs=[ | |
| (visual_path_state := gr.State()), | |
| (collision_path_state := gr.State()), | |
| desc_box, | |
| asset_folder, | |
| urdf_file, | |
| est_type_text, | |
| est_height_text, | |
| est_mass_text, | |
| est_mu_text, | |
| ], | |
| ).then( | |
| fn=render_meshes, | |
| inputs=[visual_path_state, collision_path_state, switch_viewer_state], | |
| outputs=[ | |
| viewer, | |
| collision_viewer_a, | |
| collision_viewer_b, | |
| switch_viewer_state, | |
| ], | |
| ).success( | |
| lambda: (gr.Button(interactive=True), gr.Button(interactive=False)), | |
| outputs=[extract_btn, download_btn], | |
| ) | |
| extract_btn.click( | |
| fn=create_asset_zip, inputs=[asset_folder], outputs=[download_btn] | |
| ).success(fn=lambda: gr.update(interactive=True), outputs=download_btn) | |
| demo.load(start_session) | |
| demo.unload(end_session) | |
| if __name__ == "__main__": | |
| demo.launch() | |