Optimization Enhancements - Review and Implementation Plan
Executive Summary
This document reviews the requested optimization enhancements and provides an implementation plan with any required deviations from the original specifications.
Current State Analysis
β Already Implemented (Partial)
Parallel Processing:
process_request_parallel()method exists (lines 696-751 in src/orchestrator_engine.py)- Runs intent, skills, and safety agents in parallel using
asyncio.gather() - Deviation Required: The requested
process_agents_parallel()method with different signature needs to be added
Context Caching:
- Basic caching infrastructure exists with
session_cachedictionary - Cache config has TTL defined (3600s) but expiration not actively checked
_is_cache_valid()exists but uses hardcoded 60s instead of config TTL- Deviation Required: Need to add
add_context_cache()method with proper TTL expiration
- Basic caching infrastructure exists with
Metrics Tracking:
- Basic token_count tracking exists in metadata
- Processing time tracked
- Deviation Required: Need comprehensive
track_response_metrics()method with structured logging
β Not Implemented
- Query Similarity Detection: No implementation found
- Smart Context Pruning: No token-count-based pruning exists
Implementation Plan
Step 1: Optimize Agent Chain
Status: β οΈ Partial Implementation
Action Required: Add new process_agents_parallel() method while keeping existing process_request_parallel()
Deviation Notes:
- Existing
process_request_parallel()handles intent+skills+safety together - New method will be more generic for any agent pair execution
- Will integrate with existing parallel processing flow
Step 2: Implement Context Caching with TTL
Status: β οΈ Infrastructure exists, expiration missing
Action Required: Add add_context_cache() method with expiration checking
Deviation Notes:
- Cache expiration needs to be checked on retrieval, not just set on store
- Will modify
_get_from_memory_cache()to check expiration - Will respect existing
cache_config['ttl']value (3600s)
Step 3: Add Query Similarity Detection
Status: β Not Implemented
Action Required: Implement similarity checking using embeddings
Deviation Notes:
- FAISS infrastructure exists but is incomplete
- Will use simple string similarity (Levenshtein/cosine) for MVP
- Can be enhanced with embeddings later if needed
- Will cache recent queries in orchestrator for similarity checking
Step 4: Implement Smart Context Pruning
Status: β Not Implemented
Action Required: Add prune_context() method with token counting
Deviation Notes:
- Token counting will use approximate method (4 chars β 1 token)
- Will preserve most recent interactions + most relevant (by keyword match)
- Pruning threshold: 2000 tokens (configurable)
Step 5: Add Response Metrics Tracking
Status: β οΈ Partial Implementation
Action Required: Add comprehensive track_response_metrics() method
Deviation Notes:
- Will extend existing metadata tracking
- Add structured logging for metrics
- Track: latency, token_count, agent_calls, safety_score
Files to Modify
Research_AI_Assistant/src/orchestrator_engine.py- Add
process_agents_parallel()method - Add query similarity detection
- Add response metrics tracking
- Add agent_call_count tracking
- Add
Research_AI_Assistant/src/context_manager.py- Add
add_context_cache()with TTL - Enhance
_get_from_memory_cache()with expiration check - Add
prune_context()method - Add
get_token_count()helper
- Add
Compatibility Considerations
- All enhancements will be backward compatible
- Existing functionality preserved
- New methods will be additive, not replacing existing code
- Cache TTL will respect existing config values
Testing Recommendations
- Test parallel agent execution with various agent combinations
- Verify cache expiration works correctly (test with different TTL values)
- Test query similarity with similar queries (threshold: 0.85)
- Verify context pruning maintains important information
- Validate metrics are tracked correctly in logs
Implementation Status
- Step 1: Optimize Agent Chain
- Step 2: Implement Context Caching
- Step 3: Add Query Similarity Detection
- Step 4: Implement Smart Context Pruning
- Step 5: Add Response Metrics Tracking