Research_AI_Assistant / OPTIMIZATION_ENHANCEMENTS_REVIEW.md
JatsTheAIGen's picture
cache key error when user id changes -fixed task 1 31_10_2025 v8
f759046
|
raw
history blame
4.53 kB

Optimization Enhancements - Review and Implementation Plan

Executive Summary

This document reviews the requested optimization enhancements and provides an implementation plan with any required deviations from the original specifications.

Current State Analysis

βœ… Already Implemented (Partial)

  1. Parallel Processing:

    • process_request_parallel() method exists (lines 696-751 in src/orchestrator_engine.py)
    • Runs intent, skills, and safety agents in parallel using asyncio.gather()
    • Deviation Required: The requested process_agents_parallel() method with different signature needs to be added
  2. Context Caching:

    • Basic caching infrastructure exists with session_cache dictionary
    • Cache config has TTL defined (3600s) but expiration not actively checked
    • _is_cache_valid() exists but uses hardcoded 60s instead of config TTL
    • Deviation Required: Need to add add_context_cache() method with proper TTL expiration
  3. Metrics Tracking:

    • Basic token_count tracking exists in metadata
    • Processing time tracked
    • Deviation Required: Need comprehensive track_response_metrics() method with structured logging

❌ Not Implemented

  1. Query Similarity Detection: No implementation found
  2. Smart Context Pruning: No token-count-based pruning exists

Implementation Plan

Step 1: Optimize Agent Chain

Status: ⚠️ Partial Implementation
Action Required: Add new process_agents_parallel() method while keeping existing process_request_parallel()

Deviation Notes:

  • Existing process_request_parallel() handles intent+skills+safety together
  • New method will be more generic for any agent pair execution
  • Will integrate with existing parallel processing flow

Step 2: Implement Context Caching with TTL

Status: ⚠️ Infrastructure exists, expiration missing
Action Required: Add add_context_cache() method with expiration checking

Deviation Notes:

  • Cache expiration needs to be checked on retrieval, not just set on store
  • Will modify _get_from_memory_cache() to check expiration
  • Will respect existing cache_config['ttl'] value (3600s)

Step 3: Add Query Similarity Detection

Status: ❌ Not Implemented
Action Required: Implement similarity checking using embeddings

Deviation Notes:

  • FAISS infrastructure exists but is incomplete
  • Will use simple string similarity (Levenshtein/cosine) for MVP
  • Can be enhanced with embeddings later if needed
  • Will cache recent queries in orchestrator for similarity checking

Step 4: Implement Smart Context Pruning

Status: ❌ Not Implemented
Action Required: Add prune_context() method with token counting

Deviation Notes:

  • Token counting will use approximate method (4 chars β‰ˆ 1 token)
  • Will preserve most recent interactions + most relevant (by keyword match)
  • Pruning threshold: 2000 tokens (configurable)

Step 5: Add Response Metrics Tracking

Status: ⚠️ Partial Implementation
Action Required: Add comprehensive track_response_metrics() method

Deviation Notes:

  • Will extend existing metadata tracking
  • Add structured logging for metrics
  • Track: latency, token_count, agent_calls, safety_score

Files to Modify

  1. Research_AI_Assistant/src/orchestrator_engine.py

    • Add process_agents_parallel() method
    • Add query similarity detection
    • Add response metrics tracking
    • Add agent_call_count tracking
  2. Research_AI_Assistant/src/context_manager.py

    • Add add_context_cache() with TTL
    • Enhance _get_from_memory_cache() with expiration check
    • Add prune_context() method
    • Add get_token_count() helper

Compatibility Considerations

  • All enhancements will be backward compatible
  • Existing functionality preserved
  • New methods will be additive, not replacing existing code
  • Cache TTL will respect existing config values

Testing Recommendations

  1. Test parallel agent execution with various agent combinations
  2. Verify cache expiration works correctly (test with different TTL values)
  3. Test query similarity with similar queries (threshold: 0.85)
  4. Verify context pruning maintains important information
  5. Validate metrics are tracked correctly in logs

Implementation Status

  • Step 1: Optimize Agent Chain
  • Step 2: Implement Context Caching
  • Step 3: Add Query Similarity Detection
  • Step 4: Implement Smart Context Pruning
  • Step 5: Add Response Metrics Tracking