Research_AI_Assistant / DEPLOYMENT_CHECKLIST.md
JatsTheAIGen's picture
feat: Add URL validation and update to verified Runpod URL
e716c29
# Deployment Checklist - ZeroGPU Integration
## βœ… Pre-Deployment Verification
### Code Status
- βœ… All code changes committed and pushed
- βœ… FAISS-GPU implementation complete
- βœ… Lazy-loaded local model fallback implemented
- βœ… ZeroGPU API integration complete
- βœ… Dockerfile configured correctly
- βœ… Requirements.txt updated with faiss-gpu
### Files Ready
- βœ… `Dockerfile` - Configured for HF Spaces
- βœ… `main.py` - Entry point for HF Spaces
- βœ… `requirements.txt` - All dependencies including faiss-gpu
- βœ… `README.md` - Contains HF Spaces configuration
---
## πŸš€ Deployment Steps
### 1. Verify Repository Status
```bash
git status # Should show clean or only documentation changes
git log --oneline -5 # Verify recent commits are pushed
```
### 2. Hugging Face Spaces Configuration
#### Space Settings
1. Go to: https://huggingface.co/spaces/JatinAutonomousLabs/Research_AI_Assistant
2. Navigate to **Settings** β†’ **Repository secrets**
#### Required Environment Variables
**Basic Configuration:**
```bash
HF_TOKEN=your_huggingface_token_here
```
**ZeroGPU API Configuration (Optional - for Runpod integration):**
**Option A: Service Account Mode**
```bash
USE_ZERO_GPU=true
ZERO_GPU_API_URL=https://bm9njt1ypzvuqw-8000.proxy.runpod.net
[email protected]
ZERO_GPU_PASSWORD=your-password
```
**Option B: Per-User Mode (Multi-tenant)**
```bash
USE_ZERO_GPU=true
ZERO_GPU_PER_USER_MODE=true
ZERO_GPU_API_URL=https://bm9njt1ypzvuqw-8000.proxy.runpod.net
[email protected]
ZERO_GPU_ADMIN_PASSWORD=admin-password
```
**Note:** Runpod proxy URLs follow the format: `https://<pod-id>-8000.proxy.runpod.net`
**Additional Optional Variables:**
```bash
DB_PATH=sessions.db
LOG_LEVEL=INFO
MAX_WORKERS=4
```
### 3. Hardware Selection
In HF Spaces Settings:
- **GPU**: NVIDIA T4 Medium (recommended)
- 24GB vRAM (sufficient for local model fallback)
- 30GB RAM
- 8 vCPU
**Note:** With ZeroGPU API enabled, GPU is only needed for:
- FAISS-GPU vector search (automatic CPU fallback if GPU unavailable)
- Local model fallback (only loads if ZeroGPU fails)
### 4. Deployment Process
**Automatic Deployment:**
1. Code is already pushed to `main` branch
2. HF Spaces will automatically:
- Detect `sdk: docker` in README.md
- Build Docker image from Dockerfile
- Install dependencies from requirements.txt
- Start application using `main.py`
**Manual Trigger (if needed):**
- Go to Space β†’ Settings β†’ Restart this Space
### 5. Monitor Deployment
**Check Build Logs:**
- Navigate to Space β†’ Logs
- Watch for:
- βœ… Docker build success
- βœ… Dependencies installed (including faiss-gpu)
- βœ… Application startup
- βœ… ZeroGPU client initialization (if configured)
- βœ… Local model loader initialized (as fallback)
**Expected Startup Messages:**
```
βœ“ Local model loader initialized (models will load on-demand as fallback)
βœ“ ZeroGPU API client initialized (service account mode)
βœ“ FAISS GPU resources initialized
βœ“ Application ready for launch
```
### 6. Verify Deployment
**Health Check:**
- Application should be accessible at: `https://huggingface.co/spaces/JatinAutonomousLabs/Research_AI_Assistant`
- Health endpoint: `/health` should return `{"status": "healthy"}`
**Test ZeroGPU Integration:**
1. Send a test message through the UI
2. Check logs for: `"Inference complete for {task_type} (ZeroGPU API)"`
3. Verify no local models are loaded (if ZeroGPU working)
**Test Fallback:**
1. Temporarily disable ZeroGPU (set `USE_ZERO_GPU=false`)
2. Send a test message
3. Check logs for: `"Lazy loading local model {model_id} as fallback"`
4. Verify local model loads and works
---
## πŸ” Post-Deployment Verification
### 1. Check Application Status
- [ ] Application loads without errors
- [ ] UI is accessible
- [ ] Health check endpoint responds
### 2. Verify ZeroGPU Integration
- [ ] ZeroGPU client initializes (if configured)
- [ ] API calls succeed
- [ ] No local models loaded (if ZeroGPU working)
- [ ] Usage statistics accessible (if per-user mode)
### 3. Verify FAISS-GPU
- [ ] FAISS GPU resources initialize
- [ ] Vector search works
- [ ] Falls back to CPU if GPU unavailable
### 4. Verify Fallback Chain
- [ ] ZeroGPU API tried first
- [ ] Local models load only if ZeroGPU fails
- [ ] HF Inference API used as final fallback
### 5. Monitor Resource Usage
- [ ] GPU memory usage is low (if ZeroGPU working)
- [ ] CPU usage is reasonable
- [ ] No memory leaks
---
## πŸ› Troubleshooting
### Issue: Build Fails
**Check:**
- Dockerfile syntax is correct
- Requirements.txt has all dependencies
- Python 3.10 is available
**Solution:**
- Review build logs in HF Spaces
- Test Docker build locally: `docker build -t test .`
### Issue: ZeroGPU Not Working
**Check:**
- Environment variables are set correctly
- ZeroGPU API is accessible from HF Spaces
- Network connectivity to Runpod
**Solution:**
- Verify API URL is correct
- Check credentials are valid
- Review ZeroGPU API logs
### Issue: FAISS-GPU Not Available
**Check:**
- GPU is available in HF Spaces
- faiss-gpu package installed correctly
**Solution:**
- System will automatically fall back to CPU
- Check logs for: `"FAISS GPU not available, using CPU"`
### Issue: Local Models Not Loading
**Check:**
- `use_local_models=True` in code
- Transformers/torch available
- GPU memory sufficient
**Solution:**
- Check logs for initialization errors
- Verify GPU availability
- Models will only load if ZeroGPU fails
---
## πŸ“Š Expected Resource Usage
### With ZeroGPU API Enabled (Optimal)
- **GPU Memory**: ~0-500MB (FAISS-GPU only, no local models)
- **CPU**: Low (API calls only)
- **RAM**: ~2-4GB (application + caching)
### With ZeroGPU Failing (Fallback Active)
- **GPU Memory**: ~15GB (local models loaded)
- **CPU**: Medium (model inference)
- **RAM**: ~4-6GB (models + application)
### FAISS-GPU Usage
- **GPU Memory**: ~100-500MB (depending on index size)
- **CPU Fallback**: Automatic if GPU unavailable
---
## βœ… Deployment Complete
Once all checks pass:
- βœ… Application is live
- βœ… ZeroGPU integration working
- βœ… FAISS-GPU accelerated
- βœ… Fallback chain operational
- βœ… Monitoring in place
**Next Steps:**
- Monitor usage statistics
- Review ZeroGPU API logs
- Optimize based on usage patterns
- Scale as needed
---
**Last Updated:** 2025-01-07
**Deployment Status:** Ready
**Version:** With ZeroGPU Integration + FAISS-GPU + Lazy Loading