Spaces:
Running
Running
Create backend.py
Browse files- backend.py +234 -0
backend.py
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# backend.py
|
| 2 |
+
import sqlite3
|
| 3 |
+
import threading
|
| 4 |
+
import time
|
| 5 |
+
import torch
|
| 6 |
+
from huggingface_hub import whoami
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
DB_PATH = "llm_kitchen.db"
|
| 12 |
+
training_queue = []
|
| 13 |
+
active_run_lock = threading.Lock()
|
| 14 |
+
active_run_id = None
|
| 15 |
+
|
| 16 |
+
# ------------------------------ DATABASE ------------------------------
|
| 17 |
+
|
| 18 |
+
def init_db():
|
| 19 |
+
if os.path.exists(DB_PATH):
|
| 20 |
+
return
|
| 21 |
+
conn = sqlite3.connect(DB_PATH)
|
| 22 |
+
cursor = conn.cursor()
|
| 23 |
+
cursor.executescript("""
|
| 24 |
+
CREATE TABLE IF NOT EXISTS users (
|
| 25 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 26 |
+
hf_token TEXT UNIQUE NOT NULL,
|
| 27 |
+
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
|
| 28 |
+
);
|
| 29 |
+
CREATE TABLE IF NOT EXISTS training_runs (
|
| 30 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 31 |
+
user_id INTEGER NOT NULL,
|
| 32 |
+
arch_type TEXT NOT NULL,
|
| 33 |
+
num_layers INTEGER NOT NULL,
|
| 34 |
+
learning_rate REAL NOT NULL,
|
| 35 |
+
epochs INTEGER NOT NULL,
|
| 36 |
+
batch_size INTEGER NOT NULL,
|
| 37 |
+
status TEXT DEFAULT 'queued',
|
| 38 |
+
logs TEXT DEFAULT '',
|
| 39 |
+
started_at DATETIME,
|
| 40 |
+
completed_at DATETIME,
|
| 41 |
+
FOREIGN KEY (user_id) REFERENCES users(id)
|
| 42 |
+
);
|
| 43 |
+
""")
|
| 44 |
+
conn.commit()
|
| 45 |
+
conn.close()
|
| 46 |
+
|
| 47 |
+
init_db()
|
| 48 |
+
|
| 49 |
+
def get_user_by_token(hf_token):
|
| 50 |
+
conn = sqlite3.connect(DB_PATH)
|
| 51 |
+
cursor = conn.cursor()
|
| 52 |
+
cursor.execute("SELECT id FROM users WHERE hf_token = ?", (hf_token,))
|
| 53 |
+
row = cursor.fetchone()
|
| 54 |
+
conn.close()
|
| 55 |
+
return row[0] if row else None
|
| 56 |
+
|
| 57 |
+
def create_user(hf_token):
|
| 58 |
+
conn = sqlite3.connect(DB_PATH)
|
| 59 |
+
cursor = conn.cursor()
|
| 60 |
+
cursor.execute("INSERT INTO users (hf_token) VALUES (?)", (hf_token,))
|
| 61 |
+
user_id = cursor.lastrowid
|
| 62 |
+
conn.commit()
|
| 63 |
+
conn.close()
|
| 64 |
+
return user_id
|
| 65 |
+
|
| 66 |
+
def create_training_run(user_id, config):
|
| 67 |
+
conn = sqlite3.connect(DB_PATH)
|
| 68 |
+
cursor = conn.cursor()
|
| 69 |
+
cursor.execute("""
|
| 70 |
+
INSERT INTO training_runs
|
| 71 |
+
(user_id, arch_type, num_layers, learning_rate, epochs, batch_size)
|
| 72 |
+
VALUES (?, ?, ?, ?, ?, ?)
|
| 73 |
+
""", (
|
| 74 |
+
user_id,
|
| 75 |
+
config['arch_type'],
|
| 76 |
+
config['num_layers'],
|
| 77 |
+
config['learning_rate'],
|
| 78 |
+
config['epochs'],
|
| 79 |
+
config['batch_size']
|
| 80 |
+
))
|
| 81 |
+
run_id = cursor.lastrowid
|
| 82 |
+
conn.commit()
|
| 83 |
+
conn.close()
|
| 84 |
+
return run_id
|
| 85 |
+
|
| 86 |
+
def get_user_runs(user_id):
|
| 87 |
+
conn = sqlite3.connect(DB_PATH)
|
| 88 |
+
cursor = conn.cursor()
|
| 89 |
+
cursor.execute("""
|
| 90 |
+
SELECT id, arch_type, num_layers, status, started_at
|
| 91 |
+
FROM training_runs
|
| 92 |
+
WHERE user_id = ?
|
| 93 |
+
ORDER BY started_at DESC
|
| 94 |
+
""", (user_id,))
|
| 95 |
+
runs = cursor.fetchall()
|
| 96 |
+
conn.close()
|
| 97 |
+
return runs
|
| 98 |
+
|
| 99 |
+
def get_run_logs(run_id):
|
| 100 |
+
conn = sqlite3.connect(DB_PATH)
|
| 101 |
+
cursor = conn.cursor()
|
| 102 |
+
cursor.execute("SELECT logs, status FROM training_runs WHERE id = ?", (run_id,))
|
| 103 |
+
row = cursor.fetchone()
|
| 104 |
+
conn.close()
|
| 105 |
+
return row if row else ("", "unknown")
|
| 106 |
+
|
| 107 |
+
def update_run_status(run_id, status, logs=""):
|
| 108 |
+
conn = sqlite3.connect(DB_PATH)
|
| 109 |
+
cursor = conn.cursor()
|
| 110 |
+
if status == 'running':
|
| 111 |
+
cursor.execute("UPDATE training_runs SET status = ?, started_at = CURRENT_TIMESTAMP WHERE id = ?", (status, run_id))
|
| 112 |
+
elif status in ['completed', 'failed', 'timeout']:
|
| 113 |
+
cursor.execute("UPDATE training_runs SET status = ?, completed_at = CURRENT_TIMESTAMP WHERE id = ?", (status, run_id))
|
| 114 |
+
if logs:
|
| 115 |
+
current_logs = get_run_logs(run_id)[0]
|
| 116 |
+
cursor.execute("UPDATE training_runs SET logs = ? WHERE id = ?", (current_logs + "\n" + logs, run_id))
|
| 117 |
+
conn.commit()
|
| 118 |
+
conn.close()
|
| 119 |
+
|
| 120 |
+
# ------------------------------ AUTH ------------------------------
|
| 121 |
+
|
| 122 |
+
def verify_hf_token(token):
|
| 123 |
+
try:
|
| 124 |
+
whoami(token=token)
|
| 125 |
+
user_id = get_user_by_token(token)
|
| 126 |
+
if not user_id:
|
| 127 |
+
user_id = create_user(token)
|
| 128 |
+
return user_id, "Welcome to the LLM Kitchen, Chef! π³ Your apron is ready."
|
| 129 |
+
else:
|
| 130 |
+
return user_id, "Welcome back, Chef! π¨βπ³ Your last dish is still warm."
|
| 131 |
+
except Exception as e:
|
| 132 |
+
return None, f"Invalid token. Please try again. ({str(e)})"
|
| 133 |
+
|
| 134 |
+
# ------------------------------ TRAINING QUEUE ------------------------------
|
| 135 |
+
|
| 136 |
+
def queue_training_run(user_id, config):
|
| 137 |
+
run_id = create_training_run(user_id, config)
|
| 138 |
+
training_queue.append({
|
| 139 |
+
"run_id": run_id,
|
| 140 |
+
"user_id": user_id,
|
| 141 |
+
**config
|
| 142 |
+
})
|
| 143 |
+
return run_id
|
| 144 |
+
|
| 145 |
+
def ram_check_mock():
|
| 146 |
+
# Mock: Allow 1 run at a time, 1.5GB per run
|
| 147 |
+
global active_run_id
|
| 148 |
+
return active_run_id is None
|
| 149 |
+
|
| 150 |
+
def start_training_if_free():
|
| 151 |
+
global active_run_id
|
| 152 |
+
with active_run_lock:
|
| 153 |
+
if active_run_id is not None:
|
| 154 |
+
return False
|
| 155 |
+
if not training_queue:
|
| 156 |
+
return False
|
| 157 |
+
if not ram_check_mock():
|
| 158 |
+
return False
|
| 159 |
+
|
| 160 |
+
job = training_queue.pop(0)
|
| 161 |
+
active_run_id = job["run_id"]
|
| 162 |
+
update_run_status(active_run_id, "running", "π³ Starting kitchen process...")
|
| 163 |
+
|
| 164 |
+
thread = threading.Thread(target=run_training_job, args=(job,))
|
| 165 |
+
thread.start()
|
| 166 |
+
return True
|
| 167 |
+
|
| 168 |
+
def run_training_job(job):
|
| 169 |
+
global active_run_id
|
| 170 |
+
run_id = job["run_id"]
|
| 171 |
+
try:
|
| 172 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 173 |
+
log_update(f"Run {run_id}: Device = {device}", run_id)
|
| 174 |
+
|
| 175 |
+
# Load tiny model for demo (replace with custom later)
|
| 176 |
+
model_name = "distilgpt2"
|
| 177 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 178 |
+
if tokenizer.pad_token is None:
|
| 179 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 180 |
+
|
| 181 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
| 182 |
+
log_update(f"Run {run_id}: Model loaded", run_id)
|
| 183 |
+
|
| 184 |
+
# Load dataset
|
| 185 |
+
dataset = load_dataset("voidful/reasoning_gemini_300k", split="train[:1%]") # Tiny slice for demo
|
| 186 |
+
def tokenize_function(examples):
|
| 187 |
+
texts = [q + " " + a for q, a in zip(examples["message"], examples["answer"])]
|
| 188 |
+
return tokenizer(texts, truncation=True, padding="max_length", max_length=128)
|
| 189 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=["message", "answer"])
|
| 190 |
+
log_update(f"Run {run_id}: Dataset tokenized", run_id)
|
| 191 |
+
|
| 192 |
+
# Training args
|
| 193 |
+
training_args = TrainingArguments(
|
| 194 |
+
output_dir=f"./runs/{run_id}",
|
| 195 |
+
num_train_epochs=job["epochs"],
|
| 196 |
+
per_device_train_batch_size=job["batch_size"],
|
| 197 |
+
learning_rate=job["learning_rate"],
|
| 198 |
+
save_strategy="no",
|
| 199 |
+
logging_steps=1,
|
| 200 |
+
report_to="none",
|
| 201 |
+
fp16=False,
|
| 202 |
+
no_cuda=(device == "cpu")
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 206 |
+
trainer = Trainer(
|
| 207 |
+
model=model,
|
| 208 |
+
args=training_args,
|
| 209 |
+
train_dataset=tokenized_dataset,
|
| 210 |
+
data_collator=data_collator,
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
log_update(f"Run {run_id}: Starting training...", run_id)
|
| 214 |
+
trainer.train()
|
| 215 |
+
|
| 216 |
+
# Simulate 48h timeout with short sleep for demo
|
| 217 |
+
time.sleep(10) # Replace with real training
|
| 218 |
+
|
| 219 |
+
eval_results = trainer.evaluate()
|
| 220 |
+
log_update(f"Run {run_id}: Training complete. Loss = {eval_results.get('eval_loss', 'N/A')}", run_id)
|
| 221 |
+
update_run_status(run_id, "completed")
|
| 222 |
+
|
| 223 |
+
except Exception as e:
|
| 224 |
+
log_update(f"Run {run_id}: FAILED - {str(e)}", run_id)
|
| 225 |
+
update_run_status(run_id, "failed")
|
| 226 |
+
finally:
|
| 227 |
+
with active_run_lock:
|
| 228 |
+
active_run_id = None
|
| 229 |
+
# Try starting next queued job
|
| 230 |
+
start_training_if_free()
|
| 231 |
+
|
| 232 |
+
def log_update(message, run_id):
|
| 233 |
+
print(f"[LOG] {message}") # Also print to Spaces logs
|
| 234 |
+
update_run_status(run_id, "running", message)
|