| import os | |
| import json | |
| import gradio as gr | |
| from tempfile import NamedTemporaryFile | |
| from langchain_core.prompts import ChatPromptTemplate | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_community.document_loaders import PyPDFLoader | |
| from langchain_core.output_parsers import StrOutputParser | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_community.llms import HuggingFaceHub | |
| from langchain_text_splitters import RecursiveCharacterTextSplitter | |
| from langchain_core.runnables import RunnableParallel, RunnablePassthrough | |
| huggingface_token = os.environ.get("HUGGINGFACE_TOKEN") | |
| def load_and_split_document(file): | |
| """Loads and splits the document into pages.""" | |
| loader = PyPDFLoader(file.name) | |
| data = loader.load_and_split() | |
| return data | |
| def get_embeddings(): | |
| return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
| def create_database(data, embeddings): | |
| db = FAISS.from_documents(data, embeddings) | |
| db.save_local("faiss_database") | |
| prompt = """ | |
| Answer the question based only on the following context: | |
| {context} | |
| Question: {question} | |
| """ | |
| def get_model(): | |
| return HuggingFaceHub( | |
| repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
| model_kwargs={"temperature": 0.5, "max_length": 512}, | |
| huggingfacehub_api_token=huggingface_token | |
| ) | |
| def response(database, model, question): | |
| prompt_val = ChatPromptTemplate.from_template(prompt) | |
| retriever = database.as_retriever() | |
| parser = StrOutputParser() | |
| chain = ( | |
| {'context': retriever, 'question': RunnablePassthrough()} | |
| | prompt_val | |
| | model | |
| | parser | |
| ) | |
| ans = chain.invoke(question) | |
| return ans | |
| def update_vectors(file): | |
| if file is None: | |
| return "Please upload a PDF file." | |
| data = load_and_split_document(file) | |
| embed = get_embeddings() | |
| create_database(data, embed) | |
| return "Vector store updated successfully." | |
| def ask_question(question): | |
| if not question: | |
| return "Please enter a question." | |
| embed = get_embeddings() | |
| database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True) | |
| model = get_model() | |
| return response(database, model, question) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Chat with your PDF documents") | |
| with gr.Row(): | |
| file_input = gr.File(label="Upload your PDF document", file_types=[".pdf"]) | |
| update_button = gr.Button("Update Vector Store") | |
| update_output = gr.Textbox(label="Update Status") | |
| update_button.click(update_vectors, inputs=[file_input], outputs=update_output) | |
| with gr.Row(): | |
| question_input = gr.Textbox(label="Ask a question about your documents") | |
| submit_button = gr.Button("Submit") | |
| answer_output = gr.Textbox(label="Answer") | |
| submit_button.click(ask_question, inputs=[question_input], outputs=answer_output) | |
| if __name__ == "__main__": | |
| demo.launch() |