Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import requests
|
| 4 |
+
from langchain_community.document_loaders import TextLoader, DirectoryLoader
|
| 5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
+
from langchain_community.vectorstores import FAISS
|
| 7 |
+
from langchain_openai import ChatOpenAI
|
| 8 |
+
from langchain.prompts import PromptTemplate
|
| 9 |
+
import numpy as np
|
| 10 |
+
import faiss
|
| 11 |
+
from collections import deque
|
| 12 |
+
from langchain_core.embeddings import Embeddings
|
| 13 |
+
import threading
|
| 14 |
+
import queue
|
| 15 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
| 16 |
+
from sentence_transformers import SentenceTransformer
|
| 17 |
+
import pickle
|
| 18 |
+
import torch
|
| 19 |
+
import time
|
| 20 |
+
from tqdm import tqdm
|
| 21 |
+
import logging
|
| 22 |
+
|
| 23 |
+
# 设置日志
|
| 24 |
+
logging.basicConfig(level=logging.INFO)
|
| 25 |
+
logger = logging.getLogger(__name__)
|
| 26 |
+
|
| 27 |
+
# 获取环境变量
|
| 28 |
+
os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "")
|
| 29 |
+
if not os.environ["OPENROUTER_API_KEY"]:
|
| 30 |
+
raise ValueError("OPENROUTER_API_KEY 未设置")
|
| 31 |
+
SILICONFLOW_API_KEY = os.getenv("SILICONFLOW_API_KEY")
|
| 32 |
+
if not SILICONFLOW_API_KEY:
|
| 33 |
+
raise ValueError("SILICONFLOW_API_KEY 未设置")
|
| 34 |
+
|
| 35 |
+
# SiliconFlow API 配置
|
| 36 |
+
SILICONFLOW_API_URL = "https://api.siliconflow.cn/v1/rerank"
|
| 37 |
+
|
| 38 |
+
# 自定义嵌入类,优化查询缓存
|
| 39 |
+
class SentenceTransformerEmbeddings(Embeddings):
|
| 40 |
+
def __init__(self, model_name="BAAI/bge-m3"):
|
| 41 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 42 |
+
self.model = SentenceTransformer(model_name, device=device)
|
| 43 |
+
self.batch_size = 32 # 减小批次大小以适应低内存
|
| 44 |
+
self.query_cache = {}
|
| 45 |
+
self.cache_lock = threading.Lock()
|
| 46 |
+
|
| 47 |
+
def embed_documents(self, texts):
|
| 48 |
+
embeddings_list = []
|
| 49 |
+
batch_size = 1000 # 减小批次以降低内存压力
|
| 50 |
+
total_chunks = len(texts)
|
| 51 |
+
logger.info(f"生成嵌入,文档数: {total_chunks}")
|
| 52 |
+
with torch.no_grad():
|
| 53 |
+
for i in tqdm(range(0, total_chunks, batch_size), desc="生成嵌入"):
|
| 54 |
+
batch_texts = [text.page_content for text in texts[i:i + batch_size]]
|
| 55 |
+
batch_emb = self.model.encode(
|
| 56 |
+
batch_texts,
|
| 57 |
+
normalize_embeddings=True,
|
| 58 |
+
batch_size=self.batch_size
|
| 59 |
+
)
|
| 60 |
+
embeddings_list.append(batch_emb)
|
| 61 |
+
embeddings_array = np.vstack(embeddings_list)
|
| 62 |
+
np.save("embeddings.npy", embeddings_array)
|
| 63 |
+
return embeddings_array
|
| 64 |
+
|
| 65 |
+
def embed_query(self, text):
|
| 66 |
+
with self.cache_lock:
|
| 67 |
+
if text in self.query_cache:
|
| 68 |
+
return self.query_cache[text]
|
| 69 |
+
with torch.no_grad():
|
| 70 |
+
emb = self.model.encode([text], normalize_embeddings=True, batch_size=1)[0]
|
| 71 |
+
with self.cache_lock:
|
| 72 |
+
self.query_cache[text] = emb
|
| 73 |
+
if len(self.query_cache) > 1000: # 限制缓存大小
|
| 74 |
+
self.query_cache.pop(next(iter(self.query_cache)))
|
| 75 |
+
return emb
|
| 76 |
+
|
| 77 |
+
# 重排序函数
|
| 78 |
+
def rerank_documents(query, documents, top_n=15):
|
| 79 |
+
try:
|
| 80 |
+
doc_texts = [(doc.page_content[:2048], doc.metadata.get("book", "未知来源")) for doc in documents[:50]]
|
| 81 |
+
headers = {"Authorization": f"Bearer {SILICONFLOW_API_KEY}", "Content-Type": "application/json"}
|
| 82 |
+
payload = {"model": "BAAI/bge-reranker-v2-m3", "query": query, "documents": [text for text, _ in doc_texts], "top_n": top_n}
|
| 83 |
+
response = requests.post(SILICONFLOW_API_URL, headers=headers, json=payload)
|
| 84 |
+
response.raise_for_status()
|
| 85 |
+
result = response.json()
|
| 86 |
+
reranked_docs = []
|
| 87 |
+
for res in result["results"]:
|
| 88 |
+
index = res["index"]
|
| 89 |
+
score = res["relevance_score"]
|
| 90 |
+
if index < len(documents):
|
| 91 |
+
text, book = doc_texts[index]
|
| 92 |
+
reranked_docs.append((documents[index], score))
|
| 93 |
+
return sorted(reranked_docs, key=lambda x: x[1], reverse=True)[:top_n]
|
| 94 |
+
except Exception as e:
|
| 95 |
+
logger.error(f"重排序失败: {str(e)}")
|
| 96 |
+
raise
|
| 97 |
+
|
| 98 |
+
# 构建 HNSW 索引
|
| 99 |
+
def build_hnsw_index(knowledge_base_path, index_path):
|
| 100 |
+
loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8"))
|
| 101 |
+
documents = loader.load()
|
| 102 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 103 |
+
texts = text_splitter.split_documents(documents)
|
| 104 |
+
for i, doc in enumerate(texts):
|
| 105 |
+
doc.metadata["book"] = os.path.basename(doc.metadata.get("source", "未知来源")).replace(".txt", "")
|
| 106 |
+
embeddings_array = embeddings.embed_documents(texts)
|
| 107 |
+
dimension = embeddings_array.shape[1]
|
| 108 |
+
index = faiss.IndexHNSWFlat(dimension, 16)
|
| 109 |
+
index.hnsw.efConstruction = 100
|
| 110 |
+
index.add(embeddings_array)
|
| 111 |
+
vector_store = FAISS.from_embeddings([(doc.page_content, embeddings_array[i]) for i, doc in enumerate(texts)], embeddings)
|
| 112 |
+
vector_store.index = index
|
| 113 |
+
vector_store.save_local(index_path)
|
| 114 |
+
with open("chunks.pkl", "wb") as f:
|
| 115 |
+
pickle.dump(texts, f)
|
| 116 |
+
return vector_store, texts
|
| 117 |
+
|
| 118 |
+
# 初始化嵌入模型和索引
|
| 119 |
+
embeddings = SentenceTransformerEmbeddings()
|
| 120 |
+
index_path = "faiss_index_hnsw_new"
|
| 121 |
+
knowledge_base_path = "knowledge_base"
|
| 122 |
+
|
| 123 |
+
if not os.path.exists(index_path):
|
| 124 |
+
vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path)
|
| 125 |
+
else:
|
| 126 |
+
vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True)
|
| 127 |
+
vector_store.index.hnsw.efSearch = 200 # 降低 efSearch 以提升速度
|
| 128 |
+
with open("chunks.pkl", "rb") as f:
|
| 129 |
+
all_documents = pickle.load(f)
|
| 130 |
+
|
| 131 |
+
# 初始化 LLM
|
| 132 |
+
llm = ChatOpenAI(
|
| 133 |
+
model="deepseek/deepseek-r1:free",
|
| 134 |
+
api_key=os.environ["OPENROUTER_API_KEY"],
|
| 135 |
+
base_url="https://openrouter.ai/api/v1",
|
| 136 |
+
timeout=100,
|
| 137 |
+
temperature=0.3,
|
| 138 |
+
max_tokens=130000,
|
| 139 |
+
streaming=True
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
# 提示词模板
|
| 143 |
+
prompt_template = PromptTemplate(
|
| 144 |
+
input_variables=["context", "question", "chat_history"],
|
| 145 |
+
template="""
|
| 146 |
+
你是一个研究李敖的专家,根据用户提出的问题{question}、最近7轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。
|
| 147 |
+
在回答时,请注意以下几点:
|
| 148 |
+
- 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检索内容,避免无关信息。
|
| 149 |
+
- 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。
|
| 150 |
+
- 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为:
|
| 151 |
+
- 引用文献:
|
| 152 |
+
1. [文本 1] 摘要... 出自:书名,第X页/章节。
|
| 153 |
+
2. [文本 2] 摘要... 出自:书名,第X页/章节。
|
| 154 |
+
(依此类推,至少10篇)
|
| 155 |
+
- 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。
|
| 156 |
+
- 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。
|
| 157 |
+
- 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。
|
| 158 |
+
- 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。
|
| 159 |
+
- 对于列举类问题,控制在10个要点以内,并优先提供最相关项。
|
| 160 |
+
- 如果回答较长,结构化分段总结,分点作答控制在8个点以内。
|
| 161 |
+
- 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。
|
| 162 |
+
- 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。
|
| 163 |
+
- 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。
|
| 164 |
+
- 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。
|
| 165 |
+
"""
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
# 对话历史管理
|
| 169 |
+
class ConversationHistory:
|
| 170 |
+
def __init__(self, max_length=5): # 减少历史轮数
|
| 171 |
+
self.history = deque(maxlen=max_length)
|
| 172 |
+
|
| 173 |
+
def add_turn(self, question, answer):
|
| 174 |
+
self.history.append((question, answer))
|
| 175 |
+
|
| 176 |
+
def get_history(self):
|
| 177 |
+
return [(q, a) for q, a in self.history]
|
| 178 |
+
|
| 179 |
+
# 用户会话状态
|
| 180 |
+
class UserSession:
|
| 181 |
+
def __init__(self):
|
| 182 |
+
self.conversation = ConversationHistory()
|
| 183 |
+
self.output_queue = queue.Queue()
|
| 184 |
+
self.stop_flag = threading.Event()
|
| 185 |
+
|
| 186 |
+
# 生成回答
|
| 187 |
+
def generate_answer_thread(question, session):
|
| 188 |
+
stop_flag = session.stop_flag
|
| 189 |
+
output_queue = session.output_queue
|
| 190 |
+
conversation = session.conversation
|
| 191 |
+
|
| 192 |
+
stop_flag.clear()
|
| 193 |
+
try:
|
| 194 |
+
# 打印用户问题到控制台
|
| 195 |
+
logger.info(f"用户问题: {question}")
|
| 196 |
+
|
| 197 |
+
history_list = conversation.get_history()
|
| 198 |
+
history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list[-3:]]) # 只用最后3轮
|
| 199 |
+
query_with_context = f"{history_text}\n问题: {question}" if history_text else question
|
| 200 |
+
|
| 201 |
+
# 异步生成查询嵌入
|
| 202 |
+
embed_queue = queue.Queue()
|
| 203 |
+
def embed_task():
|
| 204 |
+
start = time.time()
|
| 205 |
+
emb = embeddings.embed_query(query_with_context)
|
| 206 |
+
embed_queue.put((emb, time.time() - start))
|
| 207 |
+
embed_thread = threading.Thread(target=embed_task)
|
| 208 |
+
embed_thread.start()
|
| 209 |
+
embed_thread.join()
|
| 210 |
+
query_embedding, embed_time = embed_queue.get()
|
| 211 |
+
|
| 212 |
+
if stop_flag.is_set():
|
| 213 |
+
output_queue.put("生成已停止")
|
| 214 |
+
return
|
| 215 |
+
|
| 216 |
+
# 初始检索
|
| 217 |
+
start = time.time()
|
| 218 |
+
docs_with_scores = vector_store.similarity_search_with_score_by_vector(query_embedding, k=50)
|
| 219 |
+
search_time = time.time() - start
|
| 220 |
+
|
| 221 |
+
if stop_flag.is_set():
|
| 222 |
+
output_queue.put("生成已停止")
|
| 223 |
+
return
|
| 224 |
+
|
| 225 |
+
# 重排序
|
| 226 |
+
initial_docs = [doc for doc, _ in docs_with_scores]
|
| 227 |
+
start = time.time()
|
| 228 |
+
reranked_docs_with_scores = rerank_documents(query_with_context, initial_docs)
|
| 229 |
+
rerank_time = time.time() - start
|
| 230 |
+
final_docs = [doc for doc, _ in reranked_docs_with_scores][:10]
|
| 231 |
+
|
| 232 |
+
# 打印重排序结果到控制台
|
| 233 |
+
logger.info("重排序结果(最终保留的片段及其得分):")
|
| 234 |
+
for i, (doc, score) in enumerate(reranked_docs_with_scores[:10], 1):
|
| 235 |
+
logger.info(f"片段 {i}:")
|
| 236 |
+
logger.info(f" 内容: {doc.page_content[:100]}...")
|
| 237 |
+
logger.info(f" 来源: {doc.metadata.get('book', '未知来源')}")
|
| 238 |
+
logger.info(f" 得分: {score:.4f}")
|
| 239 |
+
|
| 240 |
+
context = "\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book')})" for i, doc in enumerate(final_docs)])
|
| 241 |
+
prompt = prompt_template.format(context=context, question=question, chat_history=history_text)
|
| 242 |
+
|
| 243 |
+
# 将时间信息加入回答开头
|
| 244 |
+
timing_info = (
|
| 245 |
+
f"处理时间统计:\n"
|
| 246 |
+
f"- 嵌入时间: {embed_time:.2f} 秒\n"
|
| 247 |
+
f"- 检索时间: {search_time:.2f} 秒\n"
|
| 248 |
+
f"- 重排序时间: {rerank_time:.2f} 秒\n\n"
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
answer = timing_info
|
| 252 |
+
output_queue.put(answer) # 先显示时间信息
|
| 253 |
+
|
| 254 |
+
# LLM 生成回答
|
| 255 |
+
start = time.time()
|
| 256 |
+
for chunk in llm.stream([HumanMessage(content=prompt)]):
|
| 257 |
+
if stop_flag.is_set():
|
| 258 |
+
output_queue.put(answer + "\n(生成已停止)")
|
| 259 |
+
return
|
| 260 |
+
answer += chunk.content
|
| 261 |
+
output_queue.put(answer)
|
| 262 |
+
llm_time = time.time() - start
|
| 263 |
+
answer += f"\n\n生成耗时: {llm_time:.2f} 秒"
|
| 264 |
+
output_queue.put(answer)
|
| 265 |
+
|
| 266 |
+
conversation.add_turn(question, answer)
|
| 267 |
+
output_queue.put(answer)
|
| 268 |
+
|
| 269 |
+
except Exception as e:
|
| 270 |
+
output_queue.put(f"Error: {str(e)}")
|
| 271 |
+
|
| 272 |
+
# Gradio 接口
|
| 273 |
+
def answer_question(question, session_state):
|
| 274 |
+
if session_state is None:
|
| 275 |
+
session_state = UserSession()
|
| 276 |
+
|
| 277 |
+
thread = threading.Thread(target=generate_answer_thread, args=(question, session_state))
|
| 278 |
+
thread.start()
|
| 279 |
+
|
| 280 |
+
while thread.is_alive() or not session_state.output_queue.empty():
|
| 281 |
+
try:
|
| 282 |
+
output = session_state.output_queue.get(timeout=0.1)
|
| 283 |
+
yield output, session_state
|
| 284 |
+
except queue.Empty:
|
| 285 |
+
continue
|
| 286 |
+
|
| 287 |
+
def stop_generation(session_state):
|
| 288 |
+
if session_state:
|
| 289 |
+
session_state.stop_flag.set()
|
| 290 |
+
return "生成已停止"
|
| 291 |
+
|
| 292 |
+
def clear_conversation():
|
| 293 |
+
return "对话已清空", UserSession()
|
| 294 |
+
|
| 295 |
+
# 自动提问功能:每天触发一次“介绍一下李敖”
|
| 296 |
+
def auto_ask_question():
|
| 297 |
+
auto_session = UserSession()
|
| 298 |
+
last_run_time = 0
|
| 299 |
+
interval = 24 * 60 * 60 # 24小时(单位:秒)
|
| 300 |
+
|
| 301 |
+
while True:
|
| 302 |
+
current_time = time.time()
|
| 303 |
+
if current_time - last_run_time >= interval:
|
| 304 |
+
logger.info("自动触发问题:介绍一下李敖")
|
| 305 |
+
thread = threading.Thread(target=generate_answer_thread, args=("介绍一下李敖", auto_session))
|
| 306 |
+
thread.start()
|
| 307 |
+
thread.join() # 等待回答生成完成
|
| 308 |
+
last_run_time = current_time
|
| 309 |
+
time.sleep(60) # 每分钟检查一次,避免占用过多资源
|
| 310 |
+
|
| 311 |
+
# Gradio 界面
|
| 312 |
+
with gr.Blocks(title="AI李敖助手") as interface:
|
| 313 |
+
gr.Markdown("## AI李敖助手")
|
| 314 |
+
gr.Markdown("### 作者:爱华山樱")
|
| 315 |
+
gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近5轮对话,输入问题以获取李敖风格的回答。")
|
| 316 |
+
gr.Markdown("提问之后红框存在期间表示正在生成回答,如果红框消失之后答案没出来,说明生成有问题(偶尔会这样),重来一次即可。")
|
| 317 |
+
session_state = gr.State(value=None)
|
| 318 |
+
question_input = gr.Textbox(label="问题")
|
| 319 |
+
submit_button = gr.Button("提交")
|
| 320 |
+
clear_button = gr.Button("新建对话")
|
| 321 |
+
stop_button = gr.Button("停止生成")
|
| 322 |
+
output_text = gr.Textbox(label="回答", interactive=False)
|
| 323 |
+
|
| 324 |
+
submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state])
|
| 325 |
+
clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state])
|
| 326 |
+
stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text)
|
| 327 |
+
|
| 328 |
+
if __name__ == "__main__":
|
| 329 |
+
# 启动自动提问线程
|
| 330 |
+
auto_thread = threading.Thread(target=auto_ask_question, daemon=True)
|
| 331 |
+
auto_thread.start()
|
| 332 |
+
# 启动 Gradio 界面
|
| 333 |
+
interface.launch(share=True)
|