Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#400
by
Basaram
- opened
app.py
CHANGED
|
@@ -1,139 +1,25 @@
|
|
| 1 |
-
|
| 2 |
-
import numpy as np
|
| 3 |
-
import random
|
| 4 |
-
import spaces
|
| 5 |
-
import torch
|
| 6 |
-
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
| 7 |
-
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
| 8 |
-
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
| 16 |
-
torch.cuda.empty_cache()
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
seed = random.randint(0, MAX_SEED)
|
| 27 |
-
generator = torch.Generator().manual_seed(seed)
|
| 28 |
-
|
| 29 |
-
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 30 |
-
prompt=prompt,
|
| 31 |
-
guidance_scale=guidance_scale,
|
| 32 |
-
num_inference_steps=num_inference_steps,
|
| 33 |
-
width=width,
|
| 34 |
-
height=height,
|
| 35 |
-
generator=generator,
|
| 36 |
-
output_type="pil",
|
| 37 |
-
good_vae=good_vae,
|
| 38 |
-
):
|
| 39 |
-
yield img, seed
|
| 40 |
-
|
| 41 |
-
examples = [
|
| 42 |
-
"a tiny astronaut hatching from an egg on the moon",
|
| 43 |
-
"a cat holding a sign that says hello world",
|
| 44 |
-
"an anime illustration of a wiener schnitzel",
|
| 45 |
-
]
|
| 46 |
-
|
| 47 |
-
css="""
|
| 48 |
-
#col-container {
|
| 49 |
-
margin: 0 auto;
|
| 50 |
-
max-width: 520px;
|
| 51 |
-
}
|
| 52 |
-
"""
|
| 53 |
-
|
| 54 |
-
with gr.Blocks(css=css) as demo:
|
| 55 |
-
|
| 56 |
-
with gr.Column(elem_id="col-container"):
|
| 57 |
-
gr.Markdown(f"""# FLUX.1 [dev]
|
| 58 |
-
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
| 59 |
-
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
| 60 |
-
""")
|
| 61 |
-
|
| 62 |
-
with gr.Row():
|
| 63 |
-
|
| 64 |
-
prompt = gr.Text(
|
| 65 |
-
label="Prompt",
|
| 66 |
-
show_label=False,
|
| 67 |
-
max_lines=1,
|
| 68 |
-
placeholder="Enter your prompt",
|
| 69 |
-
container=False,
|
| 70 |
-
)
|
| 71 |
-
|
| 72 |
-
run_button = gr.Button("Run", scale=0)
|
| 73 |
-
|
| 74 |
-
result = gr.Image(label="Result", show_label=False)
|
| 75 |
-
|
| 76 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 77 |
-
|
| 78 |
-
seed = gr.Slider(
|
| 79 |
-
label="Seed",
|
| 80 |
-
minimum=0,
|
| 81 |
-
maximum=MAX_SEED,
|
| 82 |
-
step=1,
|
| 83 |
-
value=0,
|
| 84 |
-
)
|
| 85 |
-
|
| 86 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 87 |
-
|
| 88 |
-
with gr.Row():
|
| 89 |
-
|
| 90 |
-
width = gr.Slider(
|
| 91 |
-
label="Width",
|
| 92 |
-
minimum=256,
|
| 93 |
-
maximum=MAX_IMAGE_SIZE,
|
| 94 |
-
step=32,
|
| 95 |
-
value=1024,
|
| 96 |
-
)
|
| 97 |
-
|
| 98 |
-
height = gr.Slider(
|
| 99 |
-
label="Height",
|
| 100 |
-
minimum=256,
|
| 101 |
-
maximum=MAX_IMAGE_SIZE,
|
| 102 |
-
step=32,
|
| 103 |
-
value=1024,
|
| 104 |
-
)
|
| 105 |
-
|
| 106 |
-
with gr.Row():
|
| 107 |
-
|
| 108 |
-
guidance_scale = gr.Slider(
|
| 109 |
-
label="Guidance Scale",
|
| 110 |
-
minimum=1,
|
| 111 |
-
maximum=15,
|
| 112 |
-
step=0.1,
|
| 113 |
-
value=3.5,
|
| 114 |
-
)
|
| 115 |
-
|
| 116 |
-
num_inference_steps = gr.Slider(
|
| 117 |
-
label="Number of inference steps",
|
| 118 |
-
minimum=1,
|
| 119 |
-
maximum=50,
|
| 120 |
-
step=1,
|
| 121 |
-
value=28,
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
gr.Examples(
|
| 125 |
-
examples = examples,
|
| 126 |
-
fn = infer,
|
| 127 |
-
inputs = [prompt],
|
| 128 |
-
outputs = [result, seed],
|
| 129 |
-
cache_examples="lazy"
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
gr.on(
|
| 133 |
-
triggers=[run_button.click, prompt.submit],
|
| 134 |
-
fn = infer,
|
| 135 |
-
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 136 |
-
outputs = [result, seed]
|
| 137 |
)
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
# Initialize client with Fal.AI provider and your API key (replace below)
|
| 4 |
+
client = InferenceClient(
|
| 5 |
+
provider="fal-ai",
|
| 6 |
+
api_key="your_fal_ai_api_key", # Replace with your actual Fal.AI API key
|
| 7 |
+
)
|
| 8 |
|
| 9 |
+
# Text prompt for image generation
|
| 10 |
+
prompt = "Astronaut riding a horse"
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
# Use a public or your deployed model on Fal.AI
|
| 13 |
+
model_name = "black-forest-labs/FLUX.1-dev" # Make sure this model is deployed on Fal and accessible
|
| 14 |
|
| 15 |
+
try:
|
| 16 |
+
# Generate image
|
| 17 |
+
image = client.text_to_image(
|
| 18 |
+
prompt=prompt,
|
| 19 |
+
model=model_name,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
)
|
| 21 |
+
# Display the image (if running in Jupyter/Colab)
|
| 22 |
+
image.show()
|
| 23 |
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"Error during inference: {e}")
|