Spaces:
Running
Running
Commit
·
0d2d459
1
Parent(s):
db54b60
wip; tinkering hyperparameters for large geoms
Browse files- preprocess/CBN-data.ipynb +124 -170
- preprocess/h3_utils.py +42 -40
- preprocess/utils.py +72 -33
preprocess/CBN-data.ipynb
CHANGED
|
@@ -63,11 +63,11 @@
|
|
| 63 |
"folder = 'Counties'\n",
|
| 64 |
"name = 'CA_counties'\n",
|
| 65 |
"\n",
|
| 66 |
-
"
|
| 67 |
-
"
|
| 68 |
-
"
|
| 69 |
"\n",
|
| 70 |
-
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols=
|
| 71 |
]
|
| 72 |
},
|
| 73 |
{
|
|
@@ -91,9 +91,9 @@
|
|
| 91 |
"\n",
|
| 92 |
"folder = 'Climate_zones'\n",
|
| 93 |
"name = 'climate_zones_10'\n",
|
| 94 |
-
"
|
| 95 |
-
"
|
| 96 |
-
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols=
|
| 97 |
]
|
| 98 |
},
|
| 99 |
{
|
|
@@ -118,10 +118,10 @@
|
|
| 118 |
"folder = 'Ecoregion'\n",
|
| 119 |
"name = 'ACE_ecoregions'\n",
|
| 120 |
"\n",
|
| 121 |
-
"unzip(folder = folder, file = '30x30_Ecoregions.zip')\n",
|
| 122 |
-
"process_vector(folder = folder, file = f\"{name}.shp\")\n",
|
| 123 |
"\n",
|
| 124 |
-
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols=
|
| 125 |
]
|
| 126 |
},
|
| 127 |
{
|
|
@@ -148,7 +148,7 @@
|
|
| 148 |
"outputs": [],
|
| 149 |
"source": [
|
| 150 |
"# download(folder = 'Habitat', file = 'CWHR13_2022.tif')\n",
|
| 151 |
-
"# process_raster(s3, folder = 'Habitat', file = 'CWHR13_2022.tif')"
|
| 152 |
]
|
| 153 |
},
|
| 154 |
{
|
|
@@ -165,20 +165,20 @@
|
|
| 165 |
"folder = 'Habitat'\n",
|
| 166 |
"name = 'fveg22_1'\n",
|
| 167 |
"\n",
|
| 168 |
-
"
|
| 169 |
"\n",
|
| 170 |
-
"
|
| 171 |
-
"
|
| 172 |
-
"
|
| 173 |
-
"
|
| 174 |
-
"
|
| 175 |
-
"
|
| 176 |
"\n",
|
| 177 |
-
"
|
| 178 |
-
"process_raster(s3, folder = folder, file = f\"{name}.tif\")\n",
|
| 179 |
"upload(folder = folder, file = f'{name}_processed.tif.aux.xml')\n",
|
| 180 |
"\n",
|
| 181 |
-
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols=
|
| 182 |
]
|
| 183 |
},
|
| 184 |
{
|
|
@@ -211,11 +211,11 @@
|
|
| 211 |
"download(folder = folder, file = 'Terrestrial_Biodiversity_Summary_-_ACE_[ds2739].geojson',\n",
|
| 212 |
" file_name = f\"{name}.geojson\")\n",
|
| 213 |
"\n",
|
| 214 |
-
"process_vector(folder = folder, file = f\"{name}.geojson\")\n",
|
| 215 |
-
"
|
| 216 |
"\n",
|
| 217 |
-
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols=
|
| 218 |
-
"
|
| 219 |
]
|
| 220 |
},
|
| 221 |
{
|
|
@@ -244,8 +244,8 @@
|
|
| 244 |
" 'County', 'Shape__Area', 'Shape__Length', 'geometry']\n",
|
| 245 |
" cols.append(col) #select only the cols we want + the new col. \n",
|
| 246 |
" rank_df = gdf[gdf[col]==5][cols]# filter ranks = 5\n",
|
| 247 |
-
" process_vector(folder = 'ACE_biodiversity/'+name, file = name+'.parquet',gdf = rank_df)\n",
|
| 248 |
-
" convert_pmtiles(folder ='ACE_biodiversity/'+name, file = name+'.parquet')\n"
|
| 249 |
]
|
| 250 |
},
|
| 251 |
{
|
|
@@ -283,14 +283,32 @@
|
|
| 283 |
" percentile = 0.95\n",
|
| 284 |
" threshold = gdf[col].quantile(percentile)\n",
|
| 285 |
" ace = gdf[gdf[col]>=threshold][cols]\n",
|
| 286 |
-
" process_vector(folder = 'ACE_biodiversity/'+name, file = name+'.parquet',gdf = ace)\n",
|
| 287 |
-
" convert_pmtiles(folder ='ACE_biodiversity/'+name, file = name+'.parquet')\n",
|
| 288 |
"\n",
|
| 289 |
"\n",
|
| 290 |
"# calculate 80% percentile, filter to those >= threshold. \n",
|
| 291 |
"# subset to calculate acres within each network, % of feature conserved and % of network "
|
| 292 |
]
|
| 293 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
{
|
| 295 |
"cell_type": "markdown",
|
| 296 |
"id": "6991222f-7d24-4f10-9ee0-db20513405d6",
|
|
@@ -321,9 +339,9 @@
|
|
| 321 |
"folder = 'Biodiversity_unique/Plant_richness'\n",
|
| 322 |
"name = 'species_D'\n",
|
| 323 |
"\n",
|
| 324 |
-
"download(folder = folder, file = f\"{name}.tif\")\n",
|
| 325 |
-
"filter_raster(folder = folder, file = f\"{name}.tif\", percentile = 80)\n",
|
| 326 |
-
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols=
|
| 327 |
]
|
| 328 |
},
|
| 329 |
{
|
|
@@ -348,9 +366,9 @@
|
|
| 348 |
"folder = 'Biodiversity_unique/Rarityweighted_endemic_plant_richness'\n",
|
| 349 |
"name = 'endemicspecies_E'\n",
|
| 350 |
"\n",
|
| 351 |
-
"download(folder = folder, file = f\"{name}.tif\")\n",
|
| 352 |
-
"filter_raster(folder = folder, file = f\"{name}.tif\", percentile = 80)\n",
|
| 353 |
-
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols=
|
| 354 |
]
|
| 355 |
},
|
| 356 |
{
|
|
@@ -392,8 +410,8 @@
|
|
| 392 |
"folder = 'Connectivity_resilience/Resilient_connected_network_allcategories'\n",
|
| 393 |
"name = 'rcn_wIntactBioCat_caOnly_2020-10-27'\n",
|
| 394 |
"\n",
|
| 395 |
-
"process_raster(s3, folder = folder, file = f\"{name}.tif\")\n",
|
| 396 |
-
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols=
|
| 397 |
]
|
| 398 |
},
|
| 399 |
{
|
|
@@ -468,20 +486,21 @@
|
|
| 468 |
"outputs": [],
|
| 469 |
"source": [
|
| 470 |
"%%time \n",
|
|
|
|
|
|
|
| 471 |
"\n",
|
| 472 |
"folder = 'Freshwater_resources/Wetlands'\n",
|
| 473 |
"name = 'CA_wetlands'\n",
|
| 474 |
"\n",
|
| 475 |
"# only pick a subset \n",
|
| 476 |
-
"unzip(folder = folder, file = 'CA_geodatabase_wetlands.zip')\n",
|
| 477 |
"gdf = gpd.read_file('CA_geodatabase_wetlands.gdb')\n",
|
| 478 |
"wetlands = ['Freshwater Emergent Wetland', 'Freshwater Forested/Shrub Wetland', 'Estuarine and Marine Wetland']\n",
|
| 479 |
"gdf = gdf[gdf['WETLAND_TYPE'].isin(wetlands)]\n",
|
| 480 |
"\n",
|
| 481 |
-
"process_vector(folder = folder, file = f\"{name}.parquet\", gdf = gdf)\n",
|
| 482 |
-
"
|
| 483 |
-
"geom_to_h3(con, folder = folder, file = f\"{name}.parquet\", cols=
|
| 484 |
-
"\n"
|
| 485 |
]
|
| 486 |
},
|
| 487 |
{
|
|
@@ -580,34 +599,33 @@
|
|
| 580 |
"outputs": [],
|
| 581 |
"source": [
|
| 582 |
"%%time \n",
|
|
|
|
|
|
|
| 583 |
"\n",
|
| 584 |
"folder = 'NBS_agriculture/Farmland'\n",
|
| 585 |
-
"unzip(folder = folder, file = 'Important_Farmland_2018.zip')\n",
|
| 586 |
"\n",
|
| 587 |
"folder = 'NBS_agriculture/Farmland_all'\n",
|
| 588 |
"name = 'Important_Farmland_2018'\n",
|
| 589 |
-
"process_vector(folder = folder, file = f\"{name}.gdb\")\n",
|
| 590 |
-
"
|
| 591 |
-
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols=
|
| 592 |
"\n",
|
| 593 |
"# only pick a subset \n",
|
| 594 |
"folder = 'NBS_agriculture/Farmland_all/Farmland'\n",
|
| 595 |
"name = 'Farmland_2018'\n",
|
| 596 |
-
"
|
| 597 |
-
"
|
| 598 |
-
"
|
| 599 |
-
"
|
| 600 |
-
"
|
| 601 |
-
"\n",
|
| 602 |
-
"\n",
|
| 603 |
"\n",
|
| 604 |
"# grazing lands \n",
|
| 605 |
"folder = 'NBS_agriculture/Farmland_all/Lands_suitable_grazing'\n",
|
| 606 |
"name = 'Grazing_land_2018'\n",
|
| 607 |
-
"\n",
|
| 608 |
-
"
|
| 609 |
-
"
|
| 610 |
-
"# convert_pmtiles(folder = folder, file =f\"{name}.parquet\")\n"
|
| 611 |
]
|
| 612 |
},
|
| 613 |
{
|
|
@@ -644,14 +662,6 @@
|
|
| 644 |
"Only YEAR >= 2014. "
|
| 645 |
]
|
| 646 |
},
|
| 647 |
-
{
|
| 648 |
-
"cell_type": "code",
|
| 649 |
-
"execution_count": null,
|
| 650 |
-
"id": "425f9149-d8ac-437a-9572-301bd1b1bec8",
|
| 651 |
-
"metadata": {},
|
| 652 |
-
"outputs": [],
|
| 653 |
-
"source": []
|
| 654 |
-
},
|
| 655 |
{
|
| 656 |
"cell_type": "code",
|
| 657 |
"execution_count": null,
|
|
@@ -663,15 +673,15 @@
|
|
| 663 |
"folder = 'Climate_risks/Historical_fire_perimeters'\n",
|
| 664 |
"name = 'calfire_2023'\n",
|
| 665 |
"\n",
|
| 666 |
-
"unzip(folder = folder, file = 'fire23-1gdb.zip')\n",
|
| 667 |
"gdf = gpd.read_file('fire23_1.gdb')\n",
|
| 668 |
-
"gdf = gdf[~gdf['YEAR_'].isna()]\n",
|
| 669 |
-
"gdf['YEAR_'] = gdf['YEAR_'].astype('int64')\n",
|
| 670 |
"# gdf = gdf[gdf['YEAR_']>=2014]\n",
|
| 671 |
-
"process_vector(folder = folder, file = f\"{name}.parquet\", gdf = gdf)\n",
|
| 672 |
-
"
|
| 673 |
"\n",
|
| 674 |
-
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols=
|
| 675 |
]
|
| 676 |
},
|
| 677 |
{
|
|
@@ -720,7 +730,7 @@
|
|
| 720 |
"Do seperately for both climate models - CNRM and MIROC.\n",
|
| 721 |
"'''\n",
|
| 722 |
"\n",
|
| 723 |
-
"unzip(folder = 'Climate_risks/Mid-century_habitat_climate_exposure', file = 'Midcentury_habitat_climate_exposure.zip')\n",
|
| 724 |
"\n",
|
| 725 |
"# still need to do "
|
| 726 |
]
|
|
@@ -752,10 +762,10 @@
|
|
| 752 |
"folder = 'Progress_data_new_protection/Newly_counted_lands'\n",
|
| 753 |
"name = 'newly_counted_lands_2024'\n",
|
| 754 |
"\n",
|
| 755 |
-
"unzip(folder = folder, file = f\"{name}.shp.zip\")\n",
|
| 756 |
-
"process_vector(folder = folder, file = f\"{name}.shp\")\n",
|
| 757 |
-
"
|
| 758 |
-
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols=
|
| 759 |
]
|
| 760 |
},
|
| 761 |
{
|
|
@@ -777,10 +787,10 @@
|
|
| 777 |
"folder = 'Progress_data_new_protection/DAC'\n",
|
| 778 |
"name = 'DAC_2022'\n",
|
| 779 |
"\n",
|
| 780 |
-
"unzip(folder = folder, file = 'sb535dacgdbf2022gdb.zip')\n",
|
| 781 |
-
"process_vector(folder = folder, file = 'SB535DACgdb_F_2022.gdb', file_name = f\"{name}.parquet\")\n",
|
| 782 |
-
"
|
| 783 |
-
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols=
|
| 784 |
]
|
| 785 |
},
|
| 786 |
{
|
|
@@ -804,34 +814,17 @@
|
|
| 804 |
"\n",
|
| 805 |
"folder = 'Progress_data_new_protection/Priority_populations'\n",
|
| 806 |
"name = 'CalEnviroScreen4'\n",
|
| 807 |
-
"unzip(folder = folder, file = 'Priority Populations 4.0 Geodatabase.zip')\n",
|
| 808 |
"\n",
|
| 809 |
"gdf = (con.read_geo('Priority Populations 4.0 Combined Layer.gdb')\n",
|
| 810 |
" .mutate(id=ibis.row_number().over()) #making a unique id \n",
|
| 811 |
" ).execute().set_crs('EPSG:3857')\n",
|
| 812 |
"\n",
|
| 813 |
-
"process_vector(folder = folder, file = 'Priority Populations 4.0 Combined Layer.gdb',\n",
|
| 814 |
" file_name = f\"{name}.parquet\", gdf = gdf)\n",
|
| 815 |
"\n",
|
| 816 |
-
"
|
| 817 |
-
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols=
|
| 818 |
-
]
|
| 819 |
-
},
|
| 820 |
-
{
|
| 821 |
-
"cell_type": "code",
|
| 822 |
-
"execution_count": null,
|
| 823 |
-
"id": "e64129da-f369-425f-afcc-bc595a89fb7d",
|
| 824 |
-
"metadata": {},
|
| 825 |
-
"outputs": [],
|
| 826 |
-
"source": [
|
| 827 |
-
"file = f\"{name}.parquet\"\n",
|
| 828 |
-
"folder = 'Progress_data_new_protection/Priority_populations'\n",
|
| 829 |
-
"name = 'CalEnviroScreen4'\n",
|
| 830 |
-
"bucket, path = info(folder, file)\n",
|
| 831 |
-
"# path, file = os.path.split(path)\n",
|
| 832 |
-
"# name, ext = os.path.splitext(file)\n",
|
| 833 |
-
"# join_chunked(bucket, path, file)\n",
|
| 834 |
-
"con.read_parquet(f\"s3://{bucket}/{folder}/hex/{file}_part_000.parquet\").head(10).execute()"
|
| 835 |
]
|
| 836 |
},
|
| 837 |
{
|
|
@@ -852,12 +845,12 @@
|
|
| 852 |
"folder = 'Progress_data_new_protection/Low_income_communities'\n",
|
| 853 |
"name = 'low_income_CalEnviroScreen4'\n",
|
| 854 |
"\n",
|
| 855 |
-
"unzip(folder = folder, file = 'Priority Populations 4.0 Geodatabase.zip')\n",
|
| 856 |
"\n",
|
| 857 |
"gdf = gpd.read_file('Priority Populations 4.0 Combined Layer.gdb')\n",
|
| 858 |
"gdf = gdf[gdf['Designatio'] =='Low-income community']\n",
|
| 859 |
-
"process_vector(folder = folder, file = f\"{name}.parquet\", gdf = gdf)\n",
|
| 860 |
-
"convert_pmtiles(folder = folder, file = f\"{name}.parquet\")"
|
| 861 |
]
|
| 862 |
},
|
| 863 |
{
|
|
@@ -878,10 +871,10 @@
|
|
| 878 |
"folder = 'Progress_data_new_protection/Land_Status_Zone_Ecoregion_Counties'\n",
|
| 879 |
"name = 'all_regions_reGAP_county_eco'\n",
|
| 880 |
"\n",
|
| 881 |
-
"unzip(folder = folder, file = 'Land_Status_Zone_Ecoregion_Counties.shp.zip')\n",
|
| 882 |
-
"process_vector(folder = folder, file = 'Land_Status_Zone_Ecoregion_Counties.shp',\n",
|
| 883 |
" file_name = f\"{name}.parquet\")\n",
|
| 884 |
-
"convert_pmtiles(folder = folder, file = f\"{name}.parquet\")"
|
| 885 |
]
|
| 886 |
},
|
| 887 |
{
|
|
@@ -892,43 +885,6 @@
|
|
| 892 |
"# CA Nature data"
|
| 893 |
]
|
| 894 |
},
|
| 895 |
-
{
|
| 896 |
-
"cell_type": "code",
|
| 897 |
-
"execution_count": null,
|
| 898 |
-
"id": "ecc0f168-badd-4e4d-b97b-ee7891afaa4e",
|
| 899 |
-
"metadata": {},
|
| 900 |
-
"outputs": [],
|
| 901 |
-
"source": [
|
| 902 |
-
"# def convert_h3_2(con, folder, file, cols, zoom = \"8\"):\n",
|
| 903 |
-
"# cols = \", \".join(cols) if isinstance(cols,list) else cols #unpack columns \n",
|
| 904 |
-
"# bucket = 'public-ca30x30'\n",
|
| 905 |
-
"# name = 'ca-30x30-base'\n",
|
| 906 |
-
"# file = 'ca-30x30-base.parquet'\n",
|
| 907 |
-
"# folder = \"Preprocessing\"\n",
|
| 908 |
-
"# name= name.replace('-','')\n",
|
| 909 |
-
"\n",
|
| 910 |
-
"\n",
|
| 911 |
-
"# # reproject \n",
|
| 912 |
-
"# # (con.read_parquet(f\"s3://{bucket}/{file}\")\n",
|
| 913 |
-
"# # .mutate(geom = _.geom.convert('epsg:3310','epsg:4326'))\n",
|
| 914 |
-
"# # ).to_parquet(f\"s3://{bucket}/hex/{file}\")\n",
|
| 915 |
-
"\n",
|
| 916 |
-
"# con.read_parquet(f\"s3://{bucket}/{folder}/{file}\", table_name = name)\n",
|
| 917 |
-
"\n",
|
| 918 |
-
"# con.sql(f'''\n",
|
| 919 |
-
"# WITH t2 AS (\n",
|
| 920 |
-
"# WITH t1 AS (\n",
|
| 921 |
-
"# SELECT {cols}, ST_Dump(geom) AS geom \n",
|
| 922 |
-
"# FROM {name}\n",
|
| 923 |
-
"# ) \n",
|
| 924 |
-
"# SELECT {cols},\n",
|
| 925 |
-
"# h3_polygon_wkt_to_cells_string(UNNEST(geom).geom, {zoom}) AS h{zoom}\n",
|
| 926 |
-
"# FROM t1\n",
|
| 927 |
-
"# )\n",
|
| 928 |
-
"# SELECT *, UNNEST(h{zoom}) AS h{zoom} FROM t2\n",
|
| 929 |
-
"# ''').to_parquet(f\"s3://{bucket}/{folder}/hex/{file}\")"
|
| 930 |
-
]
|
| 931 |
-
},
|
| 932 |
{
|
| 933 |
"cell_type": "code",
|
| 934 |
"execution_count": null,
|
|
@@ -946,46 +902,44 @@
|
|
| 946 |
"# download(folder = folder, file = f\"{name}.parquet\")\n",
|
| 947 |
"\n",
|
| 948 |
"# gdf = gpd.read_parquet(f\"{name}.parquet\")\n",
|
| 949 |
-
"process_vector(folder = folder, file = f\"{name}.parquet\")\n",
|
| 950 |
-
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols=
|
| 951 |
-
"\n",
|
| 952 |
-
"# convert_h3_2(con, folder = folder, file = f\"{name}.parquet\", cols= [\"id\"])\n",
|
| 953 |
-
"\n"
|
| 954 |
]
|
| 955 |
},
|
| 956 |
{
|
| 957 |
-
"cell_type": "
|
| 958 |
-
"
|
| 959 |
-
"id": "908786ec-2a86-4fb0-a47a-9de364254806",
|
| 960 |
"metadata": {},
|
| 961 |
-
"outputs": [],
|
| 962 |
"source": [
|
| 963 |
-
"#
|
| 964 |
-
"# # url = f\"s3://public-ca30x30/{folder}/{name}.parquet\"\n",
|
| 965 |
-
"\n",
|
| 966 |
-
"# con.read_parquet(url).head(10).execute()\n"
|
| 967 |
]
|
| 968 |
},
|
| 969 |
{
|
| 970 |
"cell_type": "code",
|
| 971 |
"execution_count": null,
|
| 972 |
-
"id": "
|
| 973 |
"metadata": {},
|
| 974 |
"outputs": [],
|
| 975 |
"source": [
|
| 976 |
-
"
|
| 977 |
-
"
|
| 978 |
-
"
|
| 979 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 980 |
]
|
| 981 |
-
},
|
| 982 |
-
{
|
| 983 |
-
"cell_type": "code",
|
| 984 |
-
"execution_count": null,
|
| 985 |
-
"id": "fa960a99-3c79-4e67-becf-a1cb397aa5fb",
|
| 986 |
-
"metadata": {},
|
| 987 |
-
"outputs": [],
|
| 988 |
-
"source": []
|
| 989 |
}
|
| 990 |
],
|
| 991 |
"metadata": {
|
|
|
|
| 63 |
"folder = 'Counties'\n",
|
| 64 |
"name = 'CA_counties'\n",
|
| 65 |
"\n",
|
| 66 |
+
"unzip(s3, folder = folder, file = '30x30_Counties.zip')\n",
|
| 67 |
+
"cols = process_vector(s3, folder = folder, file = f\"{name}.shp\")\n",
|
| 68 |
+
"convert_pmtiles(con, s3, folder = folder, file = f\"{name}.parquet\")\n",
|
| 69 |
"\n",
|
| 70 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols = cols)"
|
| 71 |
]
|
| 72 |
},
|
| 73 |
{
|
|
|
|
| 91 |
"\n",
|
| 92 |
"folder = 'Climate_zones'\n",
|
| 93 |
"name = 'climate_zones_10'\n",
|
| 94 |
+
"download(folder = folder, file = 'clusters_10.tif')\n",
|
| 95 |
+
"cols = process_raster(s3, folder = folder, file = 'clusters_10.tif', file_name = f\"{name}.tif\")\n",
|
| 96 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols = cols)"
|
| 97 |
]
|
| 98 |
},
|
| 99 |
{
|
|
|
|
| 118 |
"folder = 'Ecoregion'\n",
|
| 119 |
"name = 'ACE_ecoregions'\n",
|
| 120 |
"\n",
|
| 121 |
+
"unzip(s3, folder = folder, file = '30x30_Ecoregions.zip')\n",
|
| 122 |
+
"cols = process_vector(s3, folder = folder, file = f\"{name}.shp\")\n",
|
| 123 |
"\n",
|
| 124 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols = cols)"
|
| 125 |
]
|
| 126 |
},
|
| 127 |
{
|
|
|
|
| 148 |
"outputs": [],
|
| 149 |
"source": [
|
| 150 |
"# download(folder = 'Habitat', file = 'CWHR13_2022.tif')\n",
|
| 151 |
+
"# cols = process_raster(s3, folder = 'Habitat', file = 'CWHR13_2022.tif')"
|
| 152 |
]
|
| 153 |
},
|
| 154 |
{
|
|
|
|
| 165 |
"folder = 'Habitat'\n",
|
| 166 |
"name = 'fveg22_1'\n",
|
| 167 |
"\n",
|
| 168 |
+
"unzip(s3, folder = folder, file = 'fveg221gdb.zip')\n",
|
| 169 |
"\n",
|
| 170 |
+
"command = [\n",
|
| 171 |
+
" \"gdalwarp\",\n",
|
| 172 |
+
" \"-of\", \"GTiff\",\n",
|
| 173 |
+
" 'fveg22_1.gdb',\n",
|
| 174 |
+
" 'fveg22_1.tif' \n",
|
| 175 |
+
" ]\n",
|
| 176 |
"\n",
|
| 177 |
+
"subprocess.run(command, check=True)\n",
|
| 178 |
+
"cols = process_raster(s3, folder = folder, file = f\"{name}.tif\")\n",
|
| 179 |
"upload(folder = folder, file = f'{name}_processed.tif.aux.xml')\n",
|
| 180 |
"\n",
|
| 181 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols = cols)"
|
| 182 |
]
|
| 183 |
},
|
| 184 |
{
|
|
|
|
| 211 |
"download(folder = folder, file = 'Terrestrial_Biodiversity_Summary_-_ACE_[ds2739].geojson',\n",
|
| 212 |
" file_name = f\"{name}.geojson\")\n",
|
| 213 |
"\n",
|
| 214 |
+
"cols = process_vector(s3, folder = folder, file = f\"{name}.geojson\")\n",
|
| 215 |
+
"convert_pmtiles(con, s3, folder = folder, file = f\"{name}.geojson\")\n",
|
| 216 |
"\n",
|
| 217 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols = cols)\n",
|
| 218 |
+
"gdf = gpd.read_parquet(f\"{name}.parquet\")\n"
|
| 219 |
]
|
| 220 |
},
|
| 221 |
{
|
|
|
|
| 244 |
" 'County', 'Shape__Area', 'Shape__Length', 'geometry']\n",
|
| 245 |
" cols.append(col) #select only the cols we want + the new col. \n",
|
| 246 |
" rank_df = gdf[gdf[col]==5][cols]# filter ranks = 5\n",
|
| 247 |
+
" cols = process_vector(s3, folder = 'ACE_biodiversity/'+name, file = name+'.parquet',gdf = rank_df)\n",
|
| 248 |
+
" convert_pmtiles(con, s3, folder ='ACE_biodiversity/'+name, file = name+'.parquet')\n"
|
| 249 |
]
|
| 250 |
},
|
| 251 |
{
|
|
|
|
| 283 |
" percentile = 0.95\n",
|
| 284 |
" threshold = gdf[col].quantile(percentile)\n",
|
| 285 |
" ace = gdf[gdf[col]>=threshold][cols]\n",
|
| 286 |
+
" cols = process_vector(s3, folder = 'ACE_biodiversity/'+name, file = name+'.parquet',gdf = ace)\n",
|
| 287 |
+
" convert_pmtiles(con, s3, folder ='ACE_biodiversity/'+name, file = name+'.parquet')\n",
|
| 288 |
"\n",
|
| 289 |
"\n",
|
| 290 |
"# calculate 80% percentile, filter to those >= threshold. \n",
|
| 291 |
"# subset to calculate acres within each network, % of feature conserved and % of network "
|
| 292 |
]
|
| 293 |
},
|
| 294 |
+
{
|
| 295 |
+
"cell_type": "code",
|
| 296 |
+
"execution_count": null,
|
| 297 |
+
"id": "50f9c3bc-8e7e-4bb9-b1c9-9718cf8454a8",
|
| 298 |
+
"metadata": {},
|
| 299 |
+
"outputs": [],
|
| 300 |
+
"source": [
|
| 301 |
+
"con = ibis.duckdb.connect(extensions = [\"spatial\", \"h3\"])\n",
|
| 302 |
+
"set_secrets(con)\n",
|
| 303 |
+
"\n",
|
| 304 |
+
"folder = 'Climate_risks/Historical_fire_perimeters'\n",
|
| 305 |
+
"name = 'calfire_2023'\n",
|
| 306 |
+
"\n",
|
| 307 |
+
"url = f\"s3://public-ca30x30/CBN-data/{folder}/hex/{name}.parquet\"\n",
|
| 308 |
+
"\n",
|
| 309 |
+
"con.read_parquet(url).head(10).execute()\n"
|
| 310 |
+
]
|
| 311 |
+
},
|
| 312 |
{
|
| 313 |
"cell_type": "markdown",
|
| 314 |
"id": "6991222f-7d24-4f10-9ee0-db20513405d6",
|
|
|
|
| 339 |
"folder = 'Biodiversity_unique/Plant_richness'\n",
|
| 340 |
"name = 'species_D'\n",
|
| 341 |
"\n",
|
| 342 |
+
"# download(s3, folder = folder, file = f\"{name}.tif\")\n",
|
| 343 |
+
"cols = filter_raster(s3, folder = folder, file = f\"{name}.tif\", percentile = 80)\n",
|
| 344 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols = cols)"
|
| 345 |
]
|
| 346 |
},
|
| 347 |
{
|
|
|
|
| 366 |
"folder = 'Biodiversity_unique/Rarityweighted_endemic_plant_richness'\n",
|
| 367 |
"name = 'endemicspecies_E'\n",
|
| 368 |
"\n",
|
| 369 |
+
"download(s3, folder = folder, file = f\"{name}.tif\")\n",
|
| 370 |
+
"cols = filter_raster(s3, folder = folder, file = f\"{name}.tif\", percentile = 80)\n",
|
| 371 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols = cols)"
|
| 372 |
]
|
| 373 |
},
|
| 374 |
{
|
|
|
|
| 410 |
"folder = 'Connectivity_resilience/Resilient_connected_network_allcategories'\n",
|
| 411 |
"name = 'rcn_wIntactBioCat_caOnly_2020-10-27'\n",
|
| 412 |
"\n",
|
| 413 |
+
"cols = process_raster(s3, folder = folder, file = f\"{name}.tif\")\n",
|
| 414 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}_processed.parquet\", cols = cols)"
|
| 415 |
]
|
| 416 |
},
|
| 417 |
{
|
|
|
|
| 486 |
"outputs": [],
|
| 487 |
"source": [
|
| 488 |
"%%time \n",
|
| 489 |
+
"con = ibis.duckdb.connect('wetlands',extensions = [\"spatial\", \"h3\"])\n",
|
| 490 |
+
"set_secrets(con)\n",
|
| 491 |
"\n",
|
| 492 |
"folder = 'Freshwater_resources/Wetlands'\n",
|
| 493 |
"name = 'CA_wetlands'\n",
|
| 494 |
"\n",
|
| 495 |
"# only pick a subset \n",
|
| 496 |
+
"unzip(s3, folder = folder, file = 'CA_geodatabase_wetlands.zip')\n",
|
| 497 |
"gdf = gpd.read_file('CA_geodatabase_wetlands.gdb')\n",
|
| 498 |
"wetlands = ['Freshwater Emergent Wetland', 'Freshwater Forested/Shrub Wetland', 'Estuarine and Marine Wetland']\n",
|
| 499 |
"gdf = gdf[gdf['WETLAND_TYPE'].isin(wetlands)]\n",
|
| 500 |
"\n",
|
| 501 |
+
"cols = process_vector(s3, folder = folder, file = f\"{name}.parquet\", gdf = gdf)\n",
|
| 502 |
+
"convert_pmtiles(con, s3, folder =folder, file = f\"{name}.parquet\")\n",
|
| 503 |
+
"geom_to_h3(con, folder = folder, file = f\"{name}.parquet\", cols = cols)\n"
|
|
|
|
| 504 |
]
|
| 505 |
},
|
| 506 |
{
|
|
|
|
| 599 |
"outputs": [],
|
| 600 |
"source": [
|
| 601 |
"%%time \n",
|
| 602 |
+
"con = ibis.duckdb.connect('farm',extensions = [\"spatial\", \"h3\"])\n",
|
| 603 |
+
"set_secrets(con)\n",
|
| 604 |
"\n",
|
| 605 |
"folder = 'NBS_agriculture/Farmland'\n",
|
| 606 |
+
"unzip(s3, folder = folder, file = 'Important_Farmland_2018.zip')\n",
|
| 607 |
"\n",
|
| 608 |
"folder = 'NBS_agriculture/Farmland_all'\n",
|
| 609 |
"name = 'Important_Farmland_2018'\n",
|
| 610 |
+
"cols = process_vector(s3, folder = folder, file = f\"{name}.gdb\",crs = \"epsg:4326\")\n",
|
| 611 |
+
"convert_pmtiles(con, s3, folder = folder, file =f\"{name}.parquet\")\n",
|
| 612 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols = cols)\n",
|
| 613 |
"\n",
|
| 614 |
"# only pick a subset \n",
|
| 615 |
"folder = 'NBS_agriculture/Farmland_all/Farmland'\n",
|
| 616 |
"name = 'Farmland_2018'\n",
|
| 617 |
+
"gdf = gpd.read_file('Important_Farmland_2018.gdb')\n",
|
| 618 |
+
"farmland_type = ['P','S','L','U'] # prime, statewide importance, local importance, unique\n",
|
| 619 |
+
"gdf_farmland = gdf[gdf['polygon_ty'].isin(farmland_type)]\n",
|
| 620 |
+
"cols = process_vector(s3, folder = folder, file = f\"{name}.parquet\", gdf = gdf_farmland)\n",
|
| 621 |
+
"convert_pmtiles(con, s3, folder = folder, file =f\"{name}.parquet\")\n",
|
|
|
|
|
|
|
| 622 |
"\n",
|
| 623 |
"# grazing lands \n",
|
| 624 |
"folder = 'NBS_agriculture/Farmland_all/Lands_suitable_grazing'\n",
|
| 625 |
"name = 'Grazing_land_2018'\n",
|
| 626 |
+
"gdf_grazing = gdf[gdf['polygon_ty'] == 'G']\n",
|
| 627 |
+
"cols = process_vector(s3, folder = folder, file = f\"{name}.parquet\", gdf = gdf_grazing)\n",
|
| 628 |
+
"convert_pmtiles(con, s3, folder = folder, file =f\"{name}.parquet\")\n"
|
|
|
|
| 629 |
]
|
| 630 |
},
|
| 631 |
{
|
|
|
|
| 662 |
"Only YEAR >= 2014. "
|
| 663 |
]
|
| 664 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 665 |
{
|
| 666 |
"cell_type": "code",
|
| 667 |
"execution_count": null,
|
|
|
|
| 673 |
"folder = 'Climate_risks/Historical_fire_perimeters'\n",
|
| 674 |
"name = 'calfire_2023'\n",
|
| 675 |
"\n",
|
| 676 |
+
"unzip(s3, folder = folder, file = 'fire23-1gdb.zip')\n",
|
| 677 |
"gdf = gpd.read_file('fire23_1.gdb')\n",
|
| 678 |
+
"# gdf = gdf[~gdf['YEAR_'].isna()]\n",
|
| 679 |
+
"# gdf['YEAR_'] = gdf['YEAR_'].astype('int64')\n",
|
| 680 |
"# gdf = gdf[gdf['YEAR_']>=2014]\n",
|
| 681 |
+
"cols = process_vector(s3, folder = folder, file = f\"{name}.parquet\", gdf = gdf)\n",
|
| 682 |
+
"convert_pmtiles(con, s3, folder = folder, file = f\"{name}.parquet\")\n",
|
| 683 |
"\n",
|
| 684 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols = cols)"
|
| 685 |
]
|
| 686 |
},
|
| 687 |
{
|
|
|
|
| 730 |
"Do seperately for both climate models - CNRM and MIROC.\n",
|
| 731 |
"'''\n",
|
| 732 |
"\n",
|
| 733 |
+
"unzip(s3, folder = 'Climate_risks/Mid-century_habitat_climate_exposure', file = 'Midcentury_habitat_climate_exposure.zip')\n",
|
| 734 |
"\n",
|
| 735 |
"# still need to do "
|
| 736 |
]
|
|
|
|
| 762 |
"folder = 'Progress_data_new_protection/Newly_counted_lands'\n",
|
| 763 |
"name = 'newly_counted_lands_2024'\n",
|
| 764 |
"\n",
|
| 765 |
+
"unzip(s3, folder = folder, file = f\"{name}.shp.zip\")\n",
|
| 766 |
+
"cols = process_vector(s3, folder = folder, file = f\"{name}.shp\")\n",
|
| 767 |
+
"convert_pmtiles(con, s3, folder = folder, file = f\"{name}.parquet\")\n",
|
| 768 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols = cols)\n"
|
| 769 |
]
|
| 770 |
},
|
| 771 |
{
|
|
|
|
| 787 |
"folder = 'Progress_data_new_protection/DAC'\n",
|
| 788 |
"name = 'DAC_2022'\n",
|
| 789 |
"\n",
|
| 790 |
+
"unzip(s3, folder = folder, file = 'sb535dacgdbf2022gdb.zip')\n",
|
| 791 |
+
"cols = process_vector(s3, folder = folder, file = 'SB535DACgdb_F_2022.gdb', file_name = f\"{name}.parquet\")\n",
|
| 792 |
+
"convert_pmtiles(con, s3, folder = folder, file = f\"{name}.parquet\")\n",
|
| 793 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols = cols)\n"
|
| 794 |
]
|
| 795 |
},
|
| 796 |
{
|
|
|
|
| 814 |
"\n",
|
| 815 |
"folder = 'Progress_data_new_protection/Priority_populations'\n",
|
| 816 |
"name = 'CalEnviroScreen4'\n",
|
| 817 |
+
"unzip(s3, folder = folder, file = 'Priority Populations 4.0 Geodatabase.zip')\n",
|
| 818 |
"\n",
|
| 819 |
"gdf = (con.read_geo('Priority Populations 4.0 Combined Layer.gdb')\n",
|
| 820 |
" .mutate(id=ibis.row_number().over()) #making a unique id \n",
|
| 821 |
" ).execute().set_crs('EPSG:3857')\n",
|
| 822 |
"\n",
|
| 823 |
+
"cols = process_vector(folder = folder, file = 'Priority Populations 4.0 Combined Layer.gdb',\n",
|
| 824 |
" file_name = f\"{name}.parquet\", gdf = gdf)\n",
|
| 825 |
"\n",
|
| 826 |
+
"convert_pmtiles(con, s3, folder = folder, file = f\"{name}.parquet\")\n",
|
| 827 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols = cols)\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 828 |
]
|
| 829 |
},
|
| 830 |
{
|
|
|
|
| 845 |
"folder = 'Progress_data_new_protection/Low_income_communities'\n",
|
| 846 |
"name = 'low_income_CalEnviroScreen4'\n",
|
| 847 |
"\n",
|
| 848 |
+
"unzip(s3, folder = folder, file = 'Priority Populations 4.0 Geodatabase.zip')\n",
|
| 849 |
"\n",
|
| 850 |
"gdf = gpd.read_file('Priority Populations 4.0 Combined Layer.gdb')\n",
|
| 851 |
"gdf = gdf[gdf['Designatio'] =='Low-income community']\n",
|
| 852 |
+
"cols = process_vector(s3, folder = folder, file = f\"{name}.parquet\", gdf = gdf)\n",
|
| 853 |
+
"convert_pmtiles(con, s3, folder = folder, file = f\"{name}.parquet\")"
|
| 854 |
]
|
| 855 |
},
|
| 856 |
{
|
|
|
|
| 871 |
"folder = 'Progress_data_new_protection/Land_Status_Zone_Ecoregion_Counties'\n",
|
| 872 |
"name = 'all_regions_reGAP_county_eco'\n",
|
| 873 |
"\n",
|
| 874 |
+
"unzip(s3, folder = folder, file = 'Land_Status_Zone_Ecoregion_Counties.shp.zip')\n",
|
| 875 |
+
"cols = process_vector(s3, folder = folder, file = 'Land_Status_Zone_Ecoregion_Counties.shp',\n",
|
| 876 |
" file_name = f\"{name}.parquet\")\n",
|
| 877 |
+
"convert_pmtiles(con, s3, folder = folder, file = f\"{name}.parquet\")"
|
| 878 |
]
|
| 879 |
},
|
| 880 |
{
|
|
|
|
| 885 |
"# CA Nature data"
|
| 886 |
]
|
| 887 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 888 |
{
|
| 889 |
"cell_type": "code",
|
| 890 |
"execution_count": null,
|
|
|
|
| 902 |
"# download(folder = folder, file = f\"{name}.parquet\")\n",
|
| 903 |
"\n",
|
| 904 |
"# gdf = gpd.read_parquet(f\"{name}.parquet\")\n",
|
| 905 |
+
"cols = process_vector(s3, folder = folder, file = f\"{name}.parquet\")\n",
|
| 906 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols = cols)\n"
|
|
|
|
|
|
|
|
|
|
| 907 |
]
|
| 908 |
},
|
| 909 |
{
|
| 910 |
+
"cell_type": "markdown",
|
| 911 |
+
"id": "af486c71-3b84-4685-9794-fbacbf5f81c7",
|
|
|
|
| 912 |
"metadata": {},
|
|
|
|
| 913 |
"source": [
|
| 914 |
+
"# CPAD"
|
|
|
|
|
|
|
|
|
|
| 915 |
]
|
| 916 |
},
|
| 917 |
{
|
| 918 |
"cell_type": "code",
|
| 919 |
"execution_count": null,
|
| 920 |
+
"id": "cf6c896f-65f3-403a-abd9-f7dec2f4f112",
|
| 921 |
"metadata": {},
|
| 922 |
"outputs": [],
|
| 923 |
"source": [
|
| 924 |
+
"con = ibis.duckdb.connect('cpad',extensions = [\"spatial\", \"h3\"])\n",
|
| 925 |
+
"set_secrets(con)\n",
|
| 926 |
+
"\n",
|
| 927 |
+
"folder = 'cpad'\n",
|
| 928 |
+
"name = 'cced_2024b_release'\n",
|
| 929 |
+
"\n",
|
| 930 |
+
"# unzip(s3, folder = folder, file = f\"{name}.shp.zip\")\n",
|
| 931 |
+
"# cols = process_vector(s3, folder = folder, file = f\"{name}.shp\", crs=\"EPSG:3310\")\n",
|
| 932 |
+
"# convert_pmtiles(con, s3, folder = folder, file = f\"{name}.parquet\")\n",
|
| 933 |
+
"cols = process_vector(s3, folder = folder, file = f\"{name}.shp\", crs=\"EPSG:4326\")\n",
|
| 934 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols= cols)\n",
|
| 935 |
+
"\n",
|
| 936 |
+
"name = 'cpad_2024b_release'\n",
|
| 937 |
+
"# unzip(s3, folder = folder, file = f\"{name}.shp.zip\")\n",
|
| 938 |
+
"# cols = process_vector(s3, folder = folder, file = f\"{name}.shp\", crs=\"EPSG:3310\")\n",
|
| 939 |
+
"# convert_pmtiles(con, s3, folder = folder, file = f\"{name}.parquet\")\n",
|
| 940 |
+
"cols = process_vector(s3, folder = folder, file = f\"{name}.shp\", crs=\"EPSG:4326\")\n",
|
| 941 |
+
"convert_h3(con, s3, folder = folder, file = f\"{name}.parquet\", cols= cols)"
|
| 942 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 943 |
}
|
| 944 |
],
|
| 945 |
"metadata": {
|
preprocess/h3_utils.py
CHANGED
|
@@ -1,5 +1,16 @@
|
|
|
|
|
| 1 |
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
"""
|
| 4 |
Computes hexes
|
| 5 |
"""
|
|
@@ -38,38 +49,36 @@ def check_size(con, name, zoom, sample_size=100):
|
|
| 38 |
|
| 39 |
return est_total_h3, max_len
|
| 40 |
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
def
|
|
|
|
|
|
|
| 43 |
"""
|
| 44 |
Individually processing large geoms (different from processing "chunks")
|
| 45 |
"""
|
| 46 |
offset = 0
|
| 47 |
i = 0
|
| 48 |
-
limit=3000
|
| 49 |
while True:
|
| 50 |
-
|
| 51 |
-
print(f"🟠 Checking large geometry batch {i} → {
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
print(f"⏩ Skipping existing large batch: {large_key}")
|
| 57 |
-
offset += limit
|
| 58 |
i += 1
|
| 59 |
continue
|
| 60 |
-
except S3Error as err:
|
| 61 |
-
if err.code != "NoSuchKey":
|
| 62 |
-
raise
|
| 63 |
|
| 64 |
-
print(f"📝 Writing large geometry batch {i} → {
|
| 65 |
q = con.sql(f'''
|
| 66 |
SELECT *, UNNEST(h{zoom}) AS h{zoom}
|
| 67 |
FROM t2
|
| 68 |
WHERE len(h{zoom}) > {geom_len_threshold}
|
| 69 |
-
LIMIT {
|
| 70 |
''')
|
| 71 |
|
| 72 |
-
q.to_parquet(f"s3://{bucket}/{
|
| 73 |
|
| 74 |
if q.count().execute() == 0:
|
| 75 |
break
|
|
@@ -79,7 +88,6 @@ def write_large_geoms(con, s3, bucket, path, name, zoom="8", geom_len_threshold=
|
|
| 79 |
|
| 80 |
return i
|
| 81 |
|
| 82 |
-
|
| 83 |
def join_large_geoms(con, s3, bucket, path, name):
|
| 84 |
"""
|
| 85 |
If we had to process large geoms individually, join those datasets after conversion.
|
|
@@ -87,14 +95,10 @@ def join_large_geoms(con, s3, bucket, path, name):
|
|
| 87 |
# check if any large files exist before trying to join
|
| 88 |
test_key = f"{path}/hex/{name}_large_000.parquet"
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
print("✅ No large geometry chunks to join.")
|
| 95 |
-
return
|
| 96 |
-
else:
|
| 97 |
-
raise
|
| 98 |
# join if it exists
|
| 99 |
con.raw_sql(f'''
|
| 100 |
COPY (
|
|
@@ -103,27 +107,24 @@ def join_large_geoms(con, s3, bucket, path, name):
|
|
| 103 |
TO 's3://{bucket}/{path}/hex/{name}_large.parquet'
|
| 104 |
(FORMAT PARQUET)
|
| 105 |
''')
|
|
|
|
| 106 |
|
| 107 |
-
|
| 108 |
-
def
|
| 109 |
"""
|
| 110 |
Processing large files in chunks.
|
| 111 |
"""
|
| 112 |
offset = 0
|
| 113 |
i = 0
|
| 114 |
-
|
| 115 |
while True:
|
| 116 |
chunk_path = f"{path}/hex/{name}_chunk{i:03d}.parquet"
|
| 117 |
|
| 118 |
-
|
| 119 |
-
s3.stat_object(bucket, chunk_path)
|
| 120 |
print(f"⏩ Skipping existing chunk: {chunk_path}")
|
| 121 |
offset += limit
|
| 122 |
i += 1
|
| 123 |
continue
|
| 124 |
-
except S3Error as err:
|
| 125 |
-
if err.code != "NoSuchKey":
|
| 126 |
-
raise
|
| 127 |
|
| 128 |
print(f"📝 Writing chunk {i} → {chunk_path}")
|
| 129 |
q = con.sql(f'''
|
|
@@ -139,13 +140,13 @@ def chunk_data(con, s3, bucket, path, name, zoom="8", limit=100_000, geom_len_th
|
|
| 139 |
i += 1
|
| 140 |
|
| 141 |
# process large geometries using same threshold and limit
|
| 142 |
-
|
| 143 |
join_large_geoms(con, s3, bucket, path, name)
|
| 144 |
return i
|
| 145 |
|
| 146 |
|
| 147 |
|
| 148 |
-
def join_chunked(bucket, path, name):
|
| 149 |
"""
|
| 150 |
If we had to chunk the data, join those datasets after conversion.
|
| 151 |
"""
|
|
@@ -158,7 +159,8 @@ def join_chunked(bucket, path, name):
|
|
| 158 |
''')
|
| 159 |
|
| 160 |
# def convert_h3(con, folder, file, cols, zoom="8", limit=100_000, geom_len_threshold=10_000):
|
| 161 |
-
def convert_h3(con, s3, folder, file, cols, zoom="8", limit=
|
|
|
|
| 162 |
"""
|
| 163 |
Driver function to convert geometries to h3
|
| 164 |
"""
|
|
@@ -175,14 +177,14 @@ def convert_h3(con, s3, folder, file, cols, zoom="8", limit=100_000, geom_len_th
|
|
| 175 |
est_total, max_per_geom = check_size(con, name, zoom)
|
| 176 |
# if est_total > 500_000 or max_per_geom > geom_len_threshold:
|
| 177 |
|
| 178 |
-
if est_total >
|
| 179 |
print("Chunking due to estimated size")
|
| 180 |
-
|
| 181 |
-
|
| 182 |
join_chunked(con, bucket, path, name)
|
| 183 |
else:
|
| 184 |
print("Writing single output")
|
| 185 |
-
|
| 186 |
con.sql(f'''
|
| 187 |
SELECT *, UNNEST(h{zoom}) AS h{zoom}
|
| 188 |
FROM t2
|
|
|
|
| 1 |
+
from utils import *
|
| 2 |
|
| 3 |
+
# === CONFIG ===
|
| 4 |
+
default_zoom = "8"
|
| 5 |
+
default_limit = 10_000
|
| 6 |
+
default_geom_len_thresh = 5_000 # H3 cells per geometry
|
| 7 |
+
chunk_limit = default_limit
|
| 8 |
+
large_geom_thresh = default_geom_len_thresh
|
| 9 |
+
est_total_h3_thresh = 150_000
|
| 10 |
+
large_geom_batch_limit = 100
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def compute_h3(con, name, cols, zoom):
|
| 14 |
"""
|
| 15 |
Computes hexes
|
| 16 |
"""
|
|
|
|
| 49 |
|
| 50 |
return est_total_h3, max_len
|
| 51 |
|
| 52 |
+
# def chunk_large_geom(con, s3, bucket, path, name, zoom=default_zoom, geom_len_threshold=large_geom_thresh):
|
| 53 |
+
# def chunk_large_geom(con, s3, bucket, path, name, zoom="8", geom_len_threshold=10_000):
|
| 54 |
|
| 55 |
+
def chunk_large_geom(con, s3, bucket, path, name, zoom=default_zoom,
|
| 56 |
+
geom_len_threshold=large_geom_thresh,
|
| 57 |
+
batch_limit=large_geom_batch_limit):
|
| 58 |
"""
|
| 59 |
Individually processing large geoms (different from processing "chunks")
|
| 60 |
"""
|
| 61 |
offset = 0
|
| 62 |
i = 0
|
|
|
|
| 63 |
while True:
|
| 64 |
+
relative_key = f"{path}/hex/{name}_large_{i:03d}.parquet"
|
| 65 |
+
print(f"🟠 Checking large geometry batch {i} → {relative_key}")
|
| 66 |
|
| 67 |
+
if exists_on_s3(s3, folder="", file=relative_key): # we pass relative_key as `file`
|
| 68 |
+
print(f"⏩ Skipping existing large batch: {relative_key}")
|
| 69 |
+
offset += batch_limit
|
|
|
|
|
|
|
| 70 |
i += 1
|
| 71 |
continue
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
print(f"📝 Writing large geometry batch {i} → {relative_key}")
|
| 74 |
q = con.sql(f'''
|
| 75 |
SELECT *, UNNEST(h{zoom}) AS h{zoom}
|
| 76 |
FROM t2
|
| 77 |
WHERE len(h{zoom}) > {geom_len_threshold}
|
| 78 |
+
LIMIT {batch_limit} OFFSET {offset}
|
| 79 |
''')
|
| 80 |
|
| 81 |
+
q.to_parquet(f"s3://{bucket}/{relative_key}")
|
| 82 |
|
| 83 |
if q.count().execute() == 0:
|
| 84 |
break
|
|
|
|
| 88 |
|
| 89 |
return i
|
| 90 |
|
|
|
|
| 91 |
def join_large_geoms(con, s3, bucket, path, name):
|
| 92 |
"""
|
| 93 |
If we had to process large geoms individually, join those datasets after conversion.
|
|
|
|
| 95 |
# check if any large files exist before trying to join
|
| 96 |
test_key = f"{path}/hex/{name}_large_000.parquet"
|
| 97 |
|
| 98 |
+
if not exists_on_s3(s3, folder="", file=test_key):
|
| 99 |
+
print("✅ No large geometry chunks to join.")
|
| 100 |
+
return
|
| 101 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
# join if it exists
|
| 103 |
con.raw_sql(f'''
|
| 104 |
COPY (
|
|
|
|
| 107 |
TO 's3://{bucket}/{path}/hex/{name}_large.parquet'
|
| 108 |
(FORMAT PARQUET)
|
| 109 |
''')
|
| 110 |
+
|
| 111 |
|
| 112 |
+
# def chunk_geom(con, s3, bucket, path, name, zoom="8", limit=50_000, geom_len_threshold=10_000):
|
| 113 |
+
def chunk_geom(con, s3, bucket, path, name, zoom=default_zoom, limit=chunk_limit, geom_len_threshold=large_geom_thresh):
|
| 114 |
"""
|
| 115 |
Processing large files in chunks.
|
| 116 |
"""
|
| 117 |
offset = 0
|
| 118 |
i = 0
|
| 119 |
+
|
| 120 |
while True:
|
| 121 |
chunk_path = f"{path}/hex/{name}_chunk{i:03d}.parquet"
|
| 122 |
|
| 123 |
+
if exists_on_s3(s3, folder="", file=chunk_path): # relative path passed as file
|
|
|
|
| 124 |
print(f"⏩ Skipping existing chunk: {chunk_path}")
|
| 125 |
offset += limit
|
| 126 |
i += 1
|
| 127 |
continue
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
print(f"📝 Writing chunk {i} → {chunk_path}")
|
| 130 |
q = con.sql(f'''
|
|
|
|
| 140 |
i += 1
|
| 141 |
|
| 142 |
# process large geometries using same threshold and limit
|
| 143 |
+
chunk_large_geom(con, s3, bucket, path, name, zoom, geom_len_threshold=geom_len_threshold)
|
| 144 |
join_large_geoms(con, s3, bucket, path, name)
|
| 145 |
return i
|
| 146 |
|
| 147 |
|
| 148 |
|
| 149 |
+
def join_chunked(con, bucket, path, name):
|
| 150 |
"""
|
| 151 |
If we had to chunk the data, join those datasets after conversion.
|
| 152 |
"""
|
|
|
|
| 159 |
''')
|
| 160 |
|
| 161 |
# def convert_h3(con, folder, file, cols, zoom="8", limit=100_000, geom_len_threshold=10_000):
|
| 162 |
+
# def convert_h3(con, s3, folder, file, cols, zoom="8", limit=50_000, geom_len_threshold=5_000):
|
| 163 |
+
def convert_h3(con, s3, folder, file, cols, zoom=default_zoom, limit=chunk_limit, geom_len_threshold=large_geom_thresh):
|
| 164 |
"""
|
| 165 |
Driver function to convert geometries to h3
|
| 166 |
"""
|
|
|
|
| 177 |
est_total, max_per_geom = check_size(con, name, zoom)
|
| 178 |
# if est_total > 500_000 or max_per_geom > geom_len_threshold:
|
| 179 |
|
| 180 |
+
if est_total > est_total_h3_thresh or max_per_geom > geom_len_threshold:
|
| 181 |
print("Chunking due to estimated size")
|
| 182 |
+
compute_h3(con, name, cols, zoom)
|
| 183 |
+
chunk_geom(con, s3, bucket, path, name, zoom, limit, geom_len_threshold)
|
| 184 |
join_chunked(con, bucket, path, name)
|
| 185 |
else:
|
| 186 |
print("Writing single output")
|
| 187 |
+
compute_h3(con, name, cols, zoom)
|
| 188 |
con.sql(f'''
|
| 189 |
SELECT *, UNNEST(h{zoom}) AS h{zoom}
|
| 190 |
FROM t2
|
preprocess/utils.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
from minio.error import S3Error
|
|
|
|
| 2 |
|
| 3 |
import zipfile
|
| 4 |
import os
|
|
@@ -40,7 +41,7 @@ def upload(s3, folder, file):
|
|
| 40 |
s3.fput_object(bucket, path ,file)
|
| 41 |
return
|
| 42 |
|
| 43 |
-
def unzip(folder, file):
|
| 44 |
"""
|
| 45 |
Unzipping zip files
|
| 46 |
"""
|
|
@@ -49,8 +50,8 @@ def unzip(folder, file):
|
|
| 49 |
zip_ref.extractall()
|
| 50 |
return
|
| 51 |
|
| 52 |
-
# def process_vector(folder, file, file_name = None, gdf = None, crs="EPSG:3310"):
|
| 53 |
-
def process_vector(folder, file, file_name = None, gdf = None, crs="EPSG:4326"):
|
| 54 |
"""
|
| 55 |
Driver function to process vectors
|
| 56 |
"""
|
|
@@ -67,20 +68,56 @@ def process_vector(folder, file, file_name = None, gdf = None, crs="EPSG:4326"):
|
|
| 67 |
parquet_file = f"{name}{'.parquet'}"
|
| 68 |
gdf.to_parquet(parquet_file)
|
| 69 |
upload(s3, folder, parquet_file)
|
| 70 |
-
return
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
| 74 |
-
# """
|
| 75 |
-
# Uploading parquets
|
| 76 |
-
# """
|
| 77 |
-
# name, ext = os.path.splitext(file)
|
| 78 |
-
# parquet_file = f"{name}{'.parquet'}"
|
| 79 |
-
# gdf.to_parquet(parquet_file)
|
| 80 |
-
# upload(folder, parquet_file)
|
| 81 |
-
# return
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
def reproject_raster(input_file, crs="EPSG:3310"):
|
| 85 |
"""
|
| 86 |
Reproject rasters
|
|
@@ -147,7 +184,7 @@ def make_vector(input_file, crs="EPSG:4326"):
|
|
| 147 |
|
| 148 |
gdf.to_parquet(output_file)
|
| 149 |
print(gdf)
|
| 150 |
-
return output_file
|
| 151 |
|
| 152 |
def filter_raster(s3, folder, file, percentile):
|
| 153 |
"""
|
|
@@ -168,31 +205,33 @@ def filter_raster(s3, folder, file, percentile):
|
|
| 168 |
profile.update(dtype=rasterio.float64)
|
| 169 |
with rasterio.open(new_file, "w", **profile) as dst:
|
| 170 |
dst.write(filtered, 1)
|
| 171 |
-
process_raster(s3, folder, file)
|
| 172 |
-
return
|
| 173 |
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
Driver function to process rasters
|
| 177 |
-
"""
|
| 178 |
-
if file_name:
|
| 179 |
-
file = file_name
|
| 180 |
-
output_file = reproject_raster(file)
|
| 181 |
-
upload(s3, folder, output_file)
|
| 182 |
-
output_cog_file = make_cog(output_file)
|
| 183 |
-
upload(s3, folder, output_cog_file)
|
| 184 |
-
output_vector = make_vector(output_file)
|
| 185 |
-
upload(s3, folder, output_vector)
|
| 186 |
-
return
|
| 187 |
-
|
| 188 |
-
def convert_pmtiles(folder, file):
|
| 189 |
"""
|
| 190 |
Convert to PMTiles with tippecanoe
|
| 191 |
"""
|
| 192 |
name, ext = os.path.splitext(file)
|
| 193 |
if ext != '.geojson':
|
| 194 |
-
|
|
|
|
| 195 |
to_pmtiles(name+'.geojson', name+'.pmtiles', options = ['--extend-zooms-if-still-dropping'])
|
| 196 |
upload(s3, folder, name+'.pmtiles')
|
| 197 |
return
|
| 198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from minio.error import S3Error
|
| 2 |
+
from cng.utils import *
|
| 3 |
|
| 4 |
import zipfile
|
| 5 |
import os
|
|
|
|
| 41 |
s3.fput_object(bucket, path ,file)
|
| 42 |
return
|
| 43 |
|
| 44 |
+
def unzip(s3, folder, file):
|
| 45 |
"""
|
| 46 |
Unzipping zip files
|
| 47 |
"""
|
|
|
|
| 50 |
zip_ref.extractall()
|
| 51 |
return
|
| 52 |
|
| 53 |
+
# def process_vector(s3, folder, file, file_name = None, gdf = None, crs="EPSG:3310"):
|
| 54 |
+
def process_vector(s3, folder, file, file_name = None, gdf = None, crs="EPSG:4326"):
|
| 55 |
"""
|
| 56 |
Driver function to process vectors
|
| 57 |
"""
|
|
|
|
| 68 |
parquet_file = f"{name}{'.parquet'}"
|
| 69 |
gdf.to_parquet(parquet_file)
|
| 70 |
upload(s3, folder, parquet_file)
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
return gdf.drop('geom',axis = 1).columns.to_list()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
def process_raster(s3, folder, file, file_name = None):
|
| 75 |
+
"""
|
| 76 |
+
Driver function to process rasters
|
| 77 |
+
"""
|
| 78 |
+
if file_name:
|
| 79 |
+
file = file_name
|
| 80 |
+
# output_file = reproject_raster(file)
|
| 81 |
+
# upload(s3, folder, output_file)
|
| 82 |
+
# output_cog_file = make_cog(output_file)
|
| 83 |
+
# upload(s3, folder, output_cog_file)
|
| 84 |
+
# output_vector, cols = make_vector(output_file)
|
| 85 |
+
# upload(s3, folder, output_vector)
|
| 86 |
|
| 87 |
+
name, ext = os.path.splitext(file)
|
| 88 |
+
output_file = f"{name}_processed{ext}"
|
| 89 |
+
|
| 90 |
+
output_cog_file = f"{name}_processed_COG{ext}"
|
| 91 |
+
|
| 92 |
+
output_vector_file = f"{name}_processed.parquet"
|
| 93 |
+
print(output_file)
|
| 94 |
+
print(output_cog_file)
|
| 95 |
+
print(output_vector_file)
|
| 96 |
+
# Reproject raster
|
| 97 |
+
if not exists_on_s3(s3, folder, output_file):
|
| 98 |
+
output_file = reproject_raster(file)
|
| 99 |
+
upload(s3, folder, output_file)
|
| 100 |
+
else:
|
| 101 |
+
print(f"{output_file} already exists on S3, skipping reprojection/upload.")
|
| 102 |
+
|
| 103 |
+
# Make COG
|
| 104 |
+
if not exists_on_s3(s3, folder, output_cog_file):
|
| 105 |
+
output_cog_file = make_cog(output_file)
|
| 106 |
+
upload(s3, folder, output_cog_file)
|
| 107 |
+
else:
|
| 108 |
+
print(f"{output_cog_file} already exists on S3, skipping COG conversion/upload.")
|
| 109 |
+
|
| 110 |
+
# Vectorize raster
|
| 111 |
+
if not exists_on_s3(s3, folder, output_vector_file):
|
| 112 |
+
output_vector_file, cols = make_vector(output_file)
|
| 113 |
+
upload(s3, folder, output_vector_file)
|
| 114 |
+
else:
|
| 115 |
+
print(f"{output_vector_file} already exists on S3, skipping vectorization/upload.")
|
| 116 |
+
# We still need column names
|
| 117 |
+
gdf = gpd.read_parquet(output_vector_file)
|
| 118 |
+
cols = gdf.drop('geom', axis=1).columns.to_list()
|
| 119 |
+
return cols
|
| 120 |
+
|
| 121 |
def reproject_raster(input_file, crs="EPSG:3310"):
|
| 122 |
"""
|
| 123 |
Reproject rasters
|
|
|
|
| 184 |
|
| 185 |
gdf.to_parquet(output_file)
|
| 186 |
print(gdf)
|
| 187 |
+
return output_file, gdf.drop('geom',axis = 1).columns.to_list()
|
| 188 |
|
| 189 |
def filter_raster(s3, folder, file, percentile):
|
| 190 |
"""
|
|
|
|
| 205 |
profile.update(dtype=rasterio.float64)
|
| 206 |
with rasterio.open(new_file, "w", **profile) as dst:
|
| 207 |
dst.write(filtered, 1)
|
| 208 |
+
cols = process_raster(s3, folder, file)
|
| 209 |
+
return cols
|
| 210 |
|
| 211 |
+
|
| 212 |
+
def convert_pmtiles(con, s3, folder, file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
"""
|
| 214 |
Convert to PMTiles with tippecanoe
|
| 215 |
"""
|
| 216 |
name, ext = os.path.splitext(file)
|
| 217 |
if ext != '.geojson':
|
| 218 |
+
(con.read_parquet(file).execute().set_crs('epsg:3310')
|
| 219 |
+
.to_crs('epsg:4326').to_file(name+'.geojson'))
|
| 220 |
to_pmtiles(name+'.geojson', name+'.pmtiles', options = ['--extend-zooms-if-still-dropping'])
|
| 221 |
upload(s3, folder, name+'.pmtiles')
|
| 222 |
return
|
| 223 |
|
| 224 |
+
def exists_on_s3(s3, folder, file):
|
| 225 |
+
"""
|
| 226 |
+
Check if a file exists on S3
|
| 227 |
+
"""
|
| 228 |
+
bucket, path = info(folder, file)
|
| 229 |
+
print(bucket)
|
| 230 |
+
print(path)
|
| 231 |
+
|
| 232 |
+
try:
|
| 233 |
+
s3.stat_object(bucket, path)
|
| 234 |
+
return True
|
| 235 |
+
except S3Error:
|
| 236 |
+
return False
|
| 237 |
+
|