File size: 2,181 Bytes
fca9b48
 
 
 
 
 
 
 
 
 
 
 
 
5f95221
fca9b48
 
5f95221
fca9b48
 
 
5f95221
fca9b48
840a99d
fca9b48
5f95221
 
840a99d
 
5f95221
840a99d
 
5f95221
 
 
 
 
fca9b48
707f4d4
30f76f3
 
 
 
 
 
 
 
fca9b48
5f95221
 
fca9b48
f88a2bc
7db0216
320bb9e
7db0216
840a99d
fca9b48
 
 
 
5f95221
fca9b48
707f4d4
 
840a99d
fca9b48
840a99d
fca9b48
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import torch
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.text import split_and_recombine_text
from tortoise.utils.audio import load_audio, load_voice, load_voices


def inference(
    text,
    reference_audio,
    seed,
):
    texts = split_and_recombine_text(text)

    start_time = time.time()

    all_parts = []
    for j, text in enumerate(texts):
        for audio_frame in tts.tts_with_preset(
            text,
            voice_samples=load_audio(init_audio_file),
            preset="fast",
        ):
            # print("Time taken: ", time.time() - start_time)
            all_parts.append(audio_frame)
            yield (24000, audio_frame.cpu().detach().numpy())

    wav = torch.cat(all_parts, dim=0).unsqueeze(0)
    print(wav.shape)
    torchaudio.save("output.wav", wav.cpu(), 24000)
    yield (None, gr.make_waveform(audio="output.wav",))
    
def main():
    title = "Tortoise TTS 🐢"
    description = """
    A text-to-speech system which powers lot of organizations in Speech synthesis domain.
    <br/>
    a model with strong multi-voice capabilities, highly realistic prosody and intonation.
    <br/>
    for faster inference, use the 'ultra_fast' preset and duplicate space if you don't want to wait in a queue.
    <br/>
    """
    text = gr.Textbox(
        lines=1,
        label="Text",
    )

    reference_audio = gr.Audio(label="Reference Audio", type="filepath")

    output_audio = gr.Audio(label="Generated Speech")
    # download_audio = gr.Audio(label="dowanload audio:")
    interface = gr.Interface(
        fn=inference,
        inputs=[
            text,
            reference_audio,
        ],
        title=title,
        description=description,
        outputs=[output_audio],
    )
    interface.queue().launch()


if __name__ == "__main__":
    tts = TextToSpeech(kv_cache=True, use_deepspeed=True, half=True)

    with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
        f.write(
            f"\n\n-------------------------Tortoise TTS Scripts Logs, {datetime.now()}-------------------------\n"
        )

    main()