tortoise-tts / app.py
cdminix's picture
Update app.py
7db0216 verified
raw
history blame
2.18 kB
import os
import torch
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.text import split_and_recombine_text
from tortoise.utils.audio import load_audio, load_voice, load_voices
def inference(
text,
reference_audio,
seed,
):
texts = split_and_recombine_text(text)
start_time = time.time()
all_parts = []
for j, text in enumerate(texts):
for audio_frame in tts.tts_with_preset(
text,
voice_samples=load_audio(init_audio_file),
preset="fast",
):
# print("Time taken: ", time.time() - start_time)
all_parts.append(audio_frame)
yield (24000, audio_frame.cpu().detach().numpy())
wav = torch.cat(all_parts, dim=0).unsqueeze(0)
print(wav.shape)
torchaudio.save("output.wav", wav.cpu(), 24000)
yield (None, gr.make_waveform(audio="output.wav",))
def main():
title = "Tortoise TTS 🐢"
description = """
A text-to-speech system which powers lot of organizations in Speech synthesis domain.
<br/>
a model with strong multi-voice capabilities, highly realistic prosody and intonation.
<br/>
for faster inference, use the 'ultra_fast' preset and duplicate space if you don't want to wait in a queue.
<br/>
"""
text = gr.Textbox(
lines=1,
label="Text",
)
reference_audio = gr.Audio(label="Reference Audio", type="filepath")
output_audio = gr.Audio(label="Generated Speech")
# download_audio = gr.Audio(label="dowanload audio:")
interface = gr.Interface(
fn=inference,
inputs=[
text,
reference_audio,
],
title=title,
description=description,
outputs=[output_audio],
)
interface.queue().launch()
if __name__ == "__main__":
tts = TextToSpeech(kv_cache=True, use_deepspeed=True, half=True)
with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
f.write(
f"\n\n-------------------------Tortoise TTS Scripts Logs, {datetime.now()}-------------------------\n"
)
main()