File size: 12,788 Bytes
40a29d6
0a56f88
b2e8117
40a29d6
 
b2e8117
 
 
40a29d6
 
8164daf
f75f514
 
b2e8117
 
 
f75f514
b2e8117
40a29d6
f75f514
8164daf
40a29d6
f75f514
b2e8117
 
914bde0
b2e8117
 
 
 
f75f514
1a99b8c
 
 
 
 
 
 
 
 
 
b2e8117
 
 
 
 
1a99b8c
 
 
 
f75f514
b2e8117
f75f514
 
 
1a99b8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f75f514
1a99b8c
 
 
 
 
 
 
f75f514
 
 
 
 
b2e8117
1a99b8c
 
 
f75f514
 
 
 
 
 
 
1a99b8c
 
b2e8117
 
f75f514
 
 
 
b2e8117
914bde0
 
 
 
 
 
 
 
 
 
 
 
 
 
b2e8117
 
 
 
 
f75f514
 
b2e8117
 
 
 
 
 
 
 
 
 
 
 
 
914bde0
92f7a52
914bde0
b2e8117
 
 
 
 
 
 
 
 
 
914bde0
 
 
 
 
 
 
 
 
b2e8117
 
 
914bde0
b2e8117
 
f75f514
 
 
 
b2e8117
 
f75f514
 
b2e8117
f75f514
8164daf
 
 
c64bf5f
f75f514
 
 
 
 
40a29d6
 
 
 
f75f514
40a29d6
b2e8117
40a29d6
 
 
 
 
 
 
 
 
 
f75f514
40a29d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f75f514
40a29d6
 
f75f514
40a29d6
f75f514
 
95f0c53
 
 
 
 
 
 
 
 
 
c64bf5f
40a29d6
 
c64bf5f
40a29d6
92f7a52
f75f514
0a56f88
 
f75f514
 
0a56f88
 
 
 
f75f514
 
 
 
 
b2e8117
 
 
 
 
 
f75f514
b2e8117
40a29d6
95f0c53
1a99b8c
b2e8117
 
1a99b8c
914bde0
f75f514
 
 
 
 
 
 
b2e8117
f75f514
b2e8117
 
 
 
 
95f0c53
 
 
 
 
 
 
7a7a151
c64bf5f
95f0c53
b2e8117
f75f514
 
95f0c53
f75f514
 
b2e8117
 
 
 
 
 
95f0c53
40a29d6
 
0a56f88
f75f514
95f0c53
40a29d6
 
 
 
 
95f0c53
0a56f88
 
7a22267
 
f75f514
 
b2e8117
f75f514
b2e8117
f75f514
b2e8117
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import threading
import logging
from pathlib import Path
from typing import Dict
import spaces
import pandas as pd
import gradio as gr
from gradio_toggle import Toggle
from transformers import TextIteratorStreamer
from model import load_model
from scheduler import load_scheduler
from schemas import UserRequest, SteeringOutput, CONFIG

logging.basicConfig(level=logging.INFO, format='%(asctime)s %(name)s %(levelname)s:%(message)s')
logger = logging.getLogger(__name__)

model_name = "DeepSeek-R1-Distill-Qwen-7B"
examples = pd.read_csv("assets/examples.csv")

instances = {}
scheduler = load_scheduler()
model = load_model()


HEAD = """
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js" integrity="sha384-YvpcrYf0tY3lHB60NNkmXc5s9fDVZLESaAA55NDzOxhy9GkcIdslK1eN7N6jIeHz" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.7.2/css/all.min.css" integrity="sha512-Evv84Mr4kqVGRNSgIGL/F/aIDqQb7xQ2vcrdIwxfjThSH8CSR7PBEakCr51Ck+w+/U6swU2Im1vVX0SVk9ABhg==" crossorigin="anonymous" referrerpolicy="no-referrer" />
"""

HTML = f"""
<div id="banner">
    <h1><img src="/gradio_api/file=assets/rudder_3094973.png">&nbsp;LLM Censorship Steering</h1>

    <div id="links" class="row" style="margin-bottom: .8em;">
        <i class="fa-solid fa-file-pdf fa-lg"></i><a href="https://arxiv.org/abs/2504.17130"> Paper</a> &nbsp; 
        <i class="fa-solid fa-blog fa-lg"></i><a href="https://hannahxchen.github.io/blog/2025/censorship-steering"> Blog Post</a> &nbsp; 
        <i class="fa-brands fa-github fa-lg"></i><a href="https://github.com/hannahxchen/llm-censorship-steering"> Code</a> &nbsp; 
    </div>

    <div id="cover">
        <img src="/gradio_api/file=assets/demo-cover.png">
    </div>
</div>
"""

CSS = """
div.gradio-container .app {
    max-width: 1600px !important;
}

div#banner {
    display: flex;
    flex-direction: column;
    align-items: center;
    justify-content: center;

    h1 {
        font-size: 32px;
        line-height: 1.35em; 
        margin-bottom: 0em;
        display: flex;

        img {
            display: inline; 
            height: 1.35em;
        }
    }

    div#cover img {
        max-height: 130px;
        padding-top: 0.5em;
    }
}

@media (max-width: 500px) {
  div#banner {
    h1 {
        font-size: 22px;
    }

    div#links {
        font-size: 14px;
    }
  }

  div#model-state p {
    font-size: 14px;
  }
}

div#steering-toggle {
    padding-top: 8px;
    padding-bottom: 8px;
    .toggle-label {
        color: var(--body-text-color);
    }
    span p {
        font-size: var(--block-info-text-size);
        line-height: var(--line-sm);
        color: var(--block-label-text-color);
    }
}

div#coeff-slider {
    padding-bottom: 5px;
    .slider_input_container span {color: var(--body-text-color);}
    .slider_input_container {
        display: flex;
        flex-wrap: wrap;
        input {appearance: auto;}
    }
}

div#coeff-slider .wrap .head {
    justify-content: unset;
    label {margin-right: var(--size-2);}
    label span {
        color: var(--body-text-color);
        margin-bottom: 0;
    }
}

.tooltip {
    word-wrap: break-word;
    width: 12rem;
}
.tooltip-inner { 
  filter: alpha(opacity=100);
  font-size: var(--block-info-text-size);
  text-align: center;
  padding: .4rem .2rem;
  background-color: var(--neutral-500);
  border-width: 1px;
  border-radius: var(--block-radius);
}
"""


slider_info = """\
<div style='display: flex; justify-content: space-between; line-height: normal;'>\
    <span style='font-size: var(--block-info-text-size); color: var(--block-label-text-color);'>Less censorship</span>\
    <span style='font-size: var(--block-info-text-size); color: var(--block-label-text-color);'>More censorship</span>\
</div>\
"""\

slider_ticks = """\
<datalist id='values' style='display: flex; justify-content: space-between; width: 100%; padding: 0 6px;'>\
    <option value='-2' style='font-size: 13px; line-height: var(--spacing-xs); width: 1px; display: flex; justify-content: center;'>-2</option>\
    <option value='-1' style='font-size: 13px; line-height: var(--spacing-xs); width: 1px; display: flex; justify-content: center;'>-1</option>\
    <option value='0' style='font-size: 13px; line-height: var(--spacing-xs); width: 1px; display: flex; justify-content: center;'>0</option>\
    <option value='1' style='font-size: 13px; line-height: var(--spacing-xs); width: 1px; display: flex; justify-content: center;'>1</option>\
    <option value='2' style='font-size: 13px; line-height: var(--spacing-xs); width: 1px; display: flex; justify-content: center;'>2</option>\
</datalist>\
"""

coeff_info = """\
<href='#' id='coeff-info' data-bs-toggle='tooltip' style='padding-left: 3px;' data-bs-html='true' data-bs-trigger='hover focus' data-bs-placement='right' data-bs-html='true' title='Recommended range is -1.5~1.5 (Outputs may be unexpected outside this range)'><i class='fa-solid fa-circle-question'></i></span>\
"""

JS = """
async() => {
    const node = document.querySelector("div.slider_input_container");
    node.insertAdjacentHTML('beforebegin', "%s");

    const sliderNode = document.querySelector("input#range_id_0");
    sliderNode.insertAdjacentHTML('afterend', "%s");
    sliderNode.setAttribute("list", "values");

    const coeffBox = document.querySelector("div#coeff-slider label span");
    coeffBox.insertAdjacentHTML('afterend', "%s");


    var tooltipTriggerList = [].slice.call(document.querySelectorAll('[data-bs-toggle="tooltip"]'))
    var tooltipList = tooltipTriggerList.map(function (tooltipTriggerEl) {
    return new bootstrap.Tooltip(tooltipTriggerEl)
    })

    document.querySelector('span.min_value').remove();
    document.querySelector('span.max_value').remove();
}
""" % (slider_info, slider_ticks, coeff_info)


def initialize_instance(request: gr.Request):
    instances[request.session_hash] = []
    logger.info("Number of connections: %d", len(instances))
    return request.session_hash


def cleanup_instance(request: gr.Request):
    session_id = request.session_hash

    if session_id in instances:
        for data in instances[session_id]:
            if isinstance(data, SteeringOutput):
                scheduler.append(data.model_dump())
                
        del instances[session_id]

    logger.info("Number of connections: %d", len(instances))


@spaces.GPU(duration=90)
def generate(prompt: str, steering: bool, coeff: float, generation_config: Dict[str, float], layer: int, k: float):
    formatted_prompt = model.apply_chat_template(prompt)
    inputs = model.tokenize(formatted_prompt)

    streamer = TextIteratorStreamer(model.tokenizer, timeout=10, skip_prompt=True, skip_special_tokens=True)

    if steering:
        thread = threading.Thread(
            target=model.steer_generation,
            args=(inputs, streamer, k, layer, coeff, generation_config)
        )
    else:
        thread = threading.Thread(
            target=model.run_generation,
            args=(inputs, streamer, generation_config)
        )

    thread.start()
    
    generated_text = "<think>"
    for new_text in streamer:
        generated_text += new_text
        yield generated_text


def generate_output(
    session_id: str, prompt: str, steering: bool, coeff: float, 
    max_new_tokens: int, top_p: float, temperature: float, layer: int, vec_scaling: float
):
    req = UserRequest(
        session_id=session_id, prompt=prompt, steering=steering, coeff=coeff,
        max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature, vec_scale=vec_scaling, layer=layer
    )

    logger.info("User request: %s", req)
    instances[session_id].append(req)

    yield from generate(prompt, steering, coeff, req.generation_config(), layer, req.k)


async def post_process(session_id, output):
    req = instances[session_id].pop()

    if "</think>" in output:
        p = [p for p in output.partition("</think>") if p != ""]
        reasoning = "".join(p[:-1])
        if len(p) == 1:
            answer = None
        else:
            answer = p[-1]

        steering_output = SteeringOutput(**req.model_dump(), reasoning=reasoning, answer=answer)
        instances[session_id].append(steering_output)

    return gr.update(interactive=True), gr.update(interactive=True)


async def output_feedback(session_id, feedback):
    logger.info("Feedback received: %s", feedback)
    try:
        data = instances[session_id].pop()
        if "Upvote" in feedback:
            setattr(data, "upvote", True)
        elif "Downvote" in feedback:
            setattr(data, "upvote", False)

        instances[session_id].append(data)
        gr.Info("Thank you for your feedback!")
    except:
        logger.debug("Feedback submission error")


gr.set_static_paths(paths=[Path.cwd().absolute() / "assets"])
theme = gr.themes.Base(primary_hue="emerald", text_size=gr.themes.sizes.text_lg).set()

with gr.Blocks(title="LLM Censorship Steering", theme=theme, head=HEAD, css=CSS, js=JS) as demo:
    session_id = gr.State()
    gr.HTML(HTML)
    gr.Markdown(f'🤖 {model_name}')

    with gr.Row(elem_id="main-components"):
        with gr.Column(scale=1):
            with gr.Row():
                steer_toggle = Toggle(label="Steering", info="Turn off to generate original outputs", value=True, interactive=True, scale=2, elem_id="steering-toggle")
                coeff = gr.Slider(label="Coefficient", value=-1.0, minimum=-2, maximum=2, step=0.1, scale=8, show_reset_button=False, elem_id="coeff-slider")

            @gr.on(inputs=[steer_toggle], outputs=[steer_toggle, coeff], triggers=[steer_toggle.change])
            def update_toggle(toggle_value):
                if toggle_value is True:
                    return gr.update(label="Steering", info="Turn off to generate original outputs"), gr.update(interactive=True)
                else:
                    return gr.update(label="No Steering", info="Turn on to steer model outputs"), gr.update(interactive=False)
            
            input_text = gr.Textbox(label="Input", placeholder="Enter your prompt here...", lines=6, interactive=True)

            with gr.Row():
                clear_btn = gr.ClearButton()
                generate_btn = gr.Button("Generate", variant="primary")

            with gr.Accordion("⚙️ Advanced Settings", open=False):
                with gr.Row():
                    temperature = gr.Slider(0, 1, step=0.1, value=CONFIG["temperature"], interactive=True, label="Temperature", scale=1)
                    top_p = gr.Slider(0, 1, step=0.1, value=CONFIG["top_p"], interactive=True, label="Top p", scale=1)

                with gr.Row():
                    layer = gr.Slider(0, 27, step=1, value=CONFIG["layer"], interactive=True, label="Steering layer", scale=2)
                    max_new_tokens = gr.Number(CONFIG["max_new_tokens"], minimum=10, maximum=3048, interactive=True, label="Max new tokens", scale=1)
                    vec_scaling = gr.Number(CONFIG["vec_scale"], minimum=0, interactive=True, label="Vector scaling", scale=1)

        with gr.Column(scale=1):
            output = gr.Textbox(label="Output", lines=15, max_lines=15, interactive=False)

            with gr.Row():                
                upvote_btn = gr.Button("👍 Upvote", interactive=False)
                downvote_btn = gr.Button("👎 Downvote", interactive=False)

    gr.HTML("<p>‼️ For research purposes, we log user inputs and generated outputs. Please avoid submitting any confidential or personal information.</p>")
    gr.Markdown("#### Examples")
    gr.Examples(examples=examples[examples["type"] == "sensitive"].prompt.tolist(), inputs=input_text, label="Sensitive")
    gr.Examples(examples=examples[examples["type"] == "harmful"].prompt.tolist(), inputs=input_text, label="Harmful")


    @gr.on(triggers=[clear_btn.click], outputs=[upvote_btn, downvote_btn])
    def clear():
        return gr.update(interactive=False), gr.update(interactive=False)

    clear_btn.add([input_text, output])
    generate_btn.click(
        generate_output, inputs=[session_id, input_text, steer_toggle, coeff, max_new_tokens, top_p, temperature, layer, vec_scaling], outputs=output
    ).success(
        post_process, inputs=[session_id, output], outputs=[upvote_btn, downvote_btn]
    )

    upvote_btn.click(output_feedback, inputs=[session_id, upvote_btn])
    downvote_btn.click(output_feedback, inputs=[session_id, downvote_btn])
    layer.change(fn=lambda x: 1, inputs=vec_scaling, outputs=vec_scaling)

    demo.load(initialize_instance, outputs=session_id)
    demo.unload(cleanup_instance)
    

if __name__ == "__main__":
    demo.queue(default_concurrency_limit=5)
    demo.launch(debug=True)