yangzhitao
refactor: enhance submission functionality with new tabs and improved benchmark handling, and update editorconfig for consistent formatting
3f84332
raw
history blame
6.88 kB
import json
import os
import sys
from datetime import datetime, timezone
import requests
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, settings
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
if sys.version_info < (3, 11):
UTC = timezone.utc
else:
from datetime import UTC
REQUESTED_MODELS: set[str] | None = None
def add_new_submit(
model: str, base_model: str, revision: str, precision: str, weight_type: str, json_str: str, commit_message: str
):
global REQUESTED_MODELS
if not REQUESTED_MODELS:
REQUESTED_MODELS, _ = already_submitted_models(settings.EVAL_REQUESTS_PATH.as_posix())
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(
model_name=base_model, revision=revision, token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True
)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(
model_name=model, revision=revision, token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True
)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
request_json = {
"username": user_name,
"model_id": model,
"model_sha": revision,
"model_dtype": precision,
"content": json_str,
"weight_type": weight_type,
"commit_message": commit_message,
}
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
try:
response = requests.post(
url=f"http://localhost:{settings.BACKEND_PORT}/api/v1/hf/community/submit/",
json=request_json, # 使用 json 参数发送 JSON body
headers={"Content-Type": "application/json"},
)
print("response: ", response) # print response content for debugging
if response.status_code == 200:
data = response.json()
print("returned data: ", data)
if data.get("code") == 0:
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for the model to show in the PENDING list."
)
return styled_error("Submission unsuccessful.")
except Exception:
return styled_error("Submission unsuccessful.")
def add_new_eval(
model: str,
base_model: str,
revision: str,
precision: str,
weight_type: str,
model_type: str,
):
global REQUESTED_MODELS
if not REQUESTED_MODELS:
REQUESTED_MODELS, _ = already_submitted_models(settings.EVAL_REQUESTS_PATH.as_posix())
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(UTC).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(
model_name=base_model, revision=revision, token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True
)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(
model_name=model, revision=revision, token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True
)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model": model,
"base_model": base_model,
"revision": revision,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
"private": False,
}
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{settings.EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=settings.QUEUE_REPO_ID,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)