Create testapp.py
#1
by
RichardForests
- opened
- testapp.py +78 -0
testapp.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from queue import Queue
|
| 4 |
+
import time
|
| 5 |
+
from prometheus_client import start_http_server, Counter, Histogram
|
| 6 |
+
import threading
|
| 7 |
+
import psutil
|
| 8 |
+
import random
|
| 9 |
+
from transformers import pipeline, AutoConfig
|
| 10 |
+
|
| 11 |
+
# Load the model and its configuration
|
| 12 |
+
model_name = "Sevixdd/roberta-base-finetuned-ner" # Make sure this model is available
|
| 13 |
+
ner_pipeline = pipeline("ner", model=model_name)
|
| 14 |
+
config = AutoConfig.from_pretrained(model_name)
|
| 15 |
+
|
| 16 |
+
# --- Prometheus Metrics ---
|
| 17 |
+
REQUEST_COUNT = Counter('gradio_request_count', 'Total requests')
|
| 18 |
+
REQUEST_LATENCY = Histogram('gradio_request_latency_seconds', 'Request latency (s)')
|
| 19 |
+
|
| 20 |
+
# --- Logging ---
|
| 21 |
+
logging.basicConfig(filename="chat_log.txt", level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 22 |
+
|
| 23 |
+
# --- Chat Queue ---
|
| 24 |
+
chat_queue = Queue(maxsize=1) # Allow only one request at a time
|
| 25 |
+
|
| 26 |
+
# --- Chat Function ---
|
| 27 |
+
def chat_function(message, history):
|
| 28 |
+
with REQUEST_LATENCY.time():
|
| 29 |
+
REQUEST_COUNT.inc()
|
| 30 |
+
try:
|
| 31 |
+
if chat_queue.full():
|
| 32 |
+
return "The model is busy. Please wait..." # More user-friendly message
|
| 33 |
+
|
| 34 |
+
chat_queue.put(message)
|
| 35 |
+
logging.info(f"User: {message}")
|
| 36 |
+
|
| 37 |
+
ner_result = ner_pipeline(message)
|
| 38 |
+
response = f"Response from NER model: {ner_result}"
|
| 39 |
+
logging.info(f"Bot: {response}")
|
| 40 |
+
|
| 41 |
+
time.sleep(random.uniform(0.5, 2.5)) # Simulate processing (adjust as needed)
|
| 42 |
+
|
| 43 |
+
chat_queue.get()
|
| 44 |
+
return response
|
| 45 |
+
except Exception as e:
|
| 46 |
+
logging.error(f"Error: {e}")
|
| 47 |
+
return "An error occurred. Please try again later." # More helpful error message
|
| 48 |
+
|
| 49 |
+
# --- Gradio Interface ---
|
| 50 |
+
with gr.Blocks(
|
| 51 |
+
css="""
|
| 52 |
+
body {
|
| 53 |
+
background-image: url("stag.jpeg");
|
| 54 |
+
background-size: cover;
|
| 55 |
+
background-repeat: no-repeat;
|
| 56 |
+
}
|
| 57 |
+
""",
|
| 58 |
+
title="PLOD Filtered with Monitoring"
|
| 59 |
+
) as demo:
|
| 60 |
+
with gr.Tab("Chat"):
|
| 61 |
+
gr.Markdown("## Chat with the Bot")
|
| 62 |
+
chatbot = gr.ChatInterface(fn=chat_function)
|
| 63 |
+
|
| 64 |
+
with gr.Tab("Model Details"):
|
| 65 |
+
gr.Markdown("## Model Configuration")
|
| 66 |
+
gr.JSON(value=config.to_dict(), interactive=False)
|
| 67 |
+
|
| 68 |
+
# ... other tabs (Performance Metrics, Infrastructure, Logs) ...
|
| 69 |
+
|
| 70 |
+
# --- Update Functions ---
|
| 71 |
+
# ... (Implement update functions for metrics, usage, and logs here)
|
| 72 |
+
|
| 73 |
+
# --- Background Threads ---
|
| 74 |
+
threading.Thread(target=start_http_server, args=(8000,), daemon=True).start()
|
| 75 |
+
# ... (Threads for metrics, usage, and logs update)
|
| 76 |
+
|
| 77 |
+
# Launch the app
|
| 78 |
+
demo.launch(share=True)
|