Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import json | |
| import copy | |
| import time | |
| import random | |
| import logging | |
| import numpy as np | |
| from typing import Any, Dict, List, Optional, Union | |
| import torch | |
| from PIL import Image | |
| import gradio as gr | |
| import spaces | |
| from diffusers import DiffusionPipeline | |
| from huggingface_hub import ( | |
| hf_hub_download, | |
| HfFileSystem, | |
| ModelCard, | |
| snapshot_download) | |
| from diffusers.utils import load_image | |
| import requests | |
| from urllib.parse import urlparse | |
| import tempfile | |
| import shutil | |
| import uuid | |
| import zipfile | |
| # Helper functions | |
| def save_image(img): | |
| unique_name = str(uuid.uuid4()) + ".png" | |
| img.save(unique_name) | |
| return unique_name | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| # Load Qwen/Qwen-Image pipeline | |
| dtype = torch.bfloat16 | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # Load Qwen model | |
| pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device) | |
| # Aspect ratios | |
| aspect_ratios = { | |
| "1:1": (1328, 1328), | |
| "16:9": (1664, 928), | |
| "9:16": (928, 1664), | |
| "4:3": (1472, 1140), | |
| "3:4": (1140, 1472) | |
| } | |
| loras = [ | |
| # Sample Qwen-compatible LoRAs | |
| { | |
| "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Studio-Realism/resolve/main/images/2.png", | |
| "title": "Studio Realism", | |
| "repo": "prithivMLmods/Qwen-Image-Studio-Realism", | |
| "weights": "qwen-studio-realism.safetensors", | |
| "trigger_word": "Studio Realism" | |
| }, | |
| { | |
| "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Sketch-Smudge/resolve/main/images/1.png", | |
| "title": "Sketch Smudge", | |
| "repo": "prithivMLmods/Qwen-Image-Sketch-Smudge", | |
| "weights": "qwen-sketch-smudge.safetensors", | |
| "trigger_word": "Sketch Smudge" | |
| }, | |
| { | |
| "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Anime-LoRA/resolve/main/images/1.png", | |
| "title": "Qwen Anime", | |
| "repo": "prithivMLmods/Qwen-Image-Anime-LoRA", | |
| "weights": "qwen-anime.safetensors", | |
| "trigger_word": "Qwen Anime" | |
| }, | |
| { | |
| "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Synthetic-Face/resolve/main/images/2.png", | |
| "title": "Synthetic Face", | |
| "repo": "prithivMLmods/Qwen-Image-Synthetic-Face", | |
| "weights": "qwen-synthetic-face.safetensors", | |
| "trigger_word": "Synthetic Face" | |
| }, | |
| { | |
| "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Fragmented-Portraiture/resolve/main/images/3.png", | |
| "title": "Fragmented Portraiture", | |
| "repo": "prithivMLmods/Qwen-Image-Fragmented-Portraiture", | |
| "weights": "qwen-fragmented-portraiture.safetensors", | |
| "trigger_word": "Fragmented Portraiture" | |
| }, | |
| ] | |
| def load_lora_opt(pipe, lora_input): | |
| lora_input = lora_input.strip() | |
| if not lora_input: | |
| return | |
| # If it's just an ID like "author/model" | |
| if "/" in lora_input and not lora_input.startswith("http"): | |
| pipe.load_lora_weights(lora_input, adapter_name="default") | |
| return | |
| if lora_input.startswith("http"): | |
| url = lora_input | |
| # Repo page (no blob/resolve) | |
| if "huggingface.co" in url and "/blob/" not in url and "/resolve/" not in url: | |
| repo_id = urlparse(url).path.strip("/") | |
| pipe.load_lora_weights(repo_id, adapter_name="default") | |
| return | |
| # Blob link → convert to resolve link | |
| if "/blob/" in url: | |
| url = url.replace("/blob/", "/resolve/") | |
| # Download direct file | |
| tmp_dir = tempfile.mkdtemp() | |
| local_path = os.path.join(tmp_dir, os.path.basename(urlparse(url).path)) | |
| try: | |
| print(f"Downloading LoRA from {url}...") | |
| resp = requests.get(url, stream=True) | |
| resp.raise_for_status() | |
| with open(local_path, "wb") as f: | |
| for chunk in resp.iter_content(chunk_size=8192): | |
| f.write(chunk) | |
| print(f"Saved LoRA to {local_path}") | |
| pipe.load_lora_weights(local_path, adapter_name="default") | |
| finally: | |
| shutil.rmtree(tmp_dir, ignore_errors=True) | |
| def get_huggingface_safetensors(link): | |
| split_link = link.split("/") | |
| if len(split_link) == 2: | |
| try: | |
| response = requests.get(f"https://huggingface.co/api/models/{link}") | |
| response.raise_for_status() | |
| model_info = response.json() | |
| # Check if it's a Qwen model | |
| if "qwen" not in model_info.get("tags", []): | |
| raise Exception("Not a Qwen LoRA model!") | |
| # Get image if available | |
| image_url = None | |
| if "cardData" in model_info and "widget" in model_info["cardData"]: | |
| if len(model_info["cardData"]["widget"]) > 0: | |
| image_url = model_info["cardData"]["widget"][0].get("output", {}).get("url", None) | |
| # Try to find safetensors file | |
| safetensors_name = None | |
| try: | |
| model_files = requests.get(f"https://huggingface.co/api/models/{link}/tree/main").json() | |
| for file in model_files: | |
| if file.get("path", "").endswith(".safetensors"): | |
| safetensors_name = file["path"] | |
| break | |
| except: | |
| pass | |
| return split_link[1], link, safetensors_name, "trigger_word", image_url | |
| except Exception as e: | |
| print(f"Error getting model info: {e}") | |
| raise Exception(f"Failed to get model info: {e}") | |
| return None, None, None, None, None | |
| def check_custom_model(link): | |
| if link.startswith("https://"): | |
| if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"): | |
| link_split = link.split("huggingface.co/") | |
| return get_huggingface_safetensors(link_split[1]) | |
| else: | |
| return get_huggingface_safetensors(link) | |
| def add_custom_lora(custom_lora): | |
| global loras | |
| if custom_lora: | |
| try: | |
| title, repo, path, trigger_word, image = check_custom_model(custom_lora) | |
| if not title: | |
| raise Exception("Invalid LoRA model") | |
| print(f"Loaded custom LoRA: {repo}") | |
| card = f''' | |
| <div class="custom_lora_card"> | |
| <span>Loaded custom LoRA:</span> | |
| <div class="card_internal"> | |
| <img src="{image}" /> | |
| <div> | |
| <h3>{title}</h3> | |
| <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small> | |
| </div> | |
| </div> | |
| </div> | |
| ''' | |
| existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) | |
| if not existing_item_index: | |
| new_item = { | |
| "image": image, | |
| "title": title, | |
| "repo": repo, | |
| "weights": path, | |
| "trigger_word": trigger_word | |
| } | |
| existing_item_index = len(loras) | |
| loras.append(new_item) | |
| return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word | |
| except Exception as e: | |
| gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen LoRA") | |
| return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen LoRA"), gr.update(visible=False), gr.update(), "", None, "" | |
| else: | |
| return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" | |
| def remove_custom_lora(): | |
| return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" | |
| def update_selection(evt: gr.SelectData, width, height): | |
| selected_lora = loras[evt.index] | |
| new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
| lora_repo = selected_lora["repo"] | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅" | |
| # Update aspect ratio based on LoRA if it has aspect info | |
| if "aspect" in selected_lora: | |
| if selected_lora["aspect"] == "portrait": | |
| width = 928 | |
| height = 1664 | |
| elif selected_lora["aspect"] == "landscape": | |
| width = 1664 | |
| height = 928 | |
| else: | |
| width = 1328 | |
| height = 1328 | |
| return ( | |
| gr.update(placeholder=new_placeholder), | |
| updated_text, | |
| evt.index, | |
| width, | |
| height, | |
| ) | |
| def generate_qwen( | |
| prompt: str, | |
| negative_prompt: str = "", | |
| seed: int = 0, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale: float = 4.0, | |
| randomize_seed: bool = False, | |
| num_inference_steps: int = 50, | |
| num_images: int = 1, | |
| zip_images: bool = False, | |
| lora_input: str = "", | |
| lora_scale: float = 1.0, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device).manual_seed(seed) | |
| start_time = time.time() | |
| # Clear any existing LoRA adapters | |
| current_adapters = pipe.get_list_adapters() | |
| for adapter in current_adapters: | |
| pipe.delete_adapters(adapter) | |
| pipe.disable_lora() | |
| use_lora = False | |
| if lora_input and lora_input.strip() != "": | |
| load_lora_opt(pipe, lora_input) | |
| pipe.set_adapters(["default"], adapter_weights=[lora_scale]) | |
| use_lora = True | |
| images = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt if negative_prompt else "", | |
| height=height, | |
| width=width, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| num_images_per_prompt=num_images, | |
| generator=generator, | |
| output_type="pil", | |
| ).images | |
| end_time = time.time() | |
| duration = end_time - start_time | |
| image_paths = [save_image(img) for img in images] | |
| zip_path = None | |
| if zip_images: | |
| zip_name = str(uuid.uuid4()) + ".zip" | |
| with zipfile.ZipFile(zip_name, 'w') as zipf: | |
| for i, img_path in enumerate(image_paths): | |
| zipf.write(img_path, arcname=f"Img_{i}.png") | |
| zip_path = zip_name | |
| # Clean up adapters | |
| current_adapters = pipe.get_list_adapters() | |
| for adapter in current_adapters: | |
| pipe.delete_adapters(adapter) | |
| pipe.disable_lora() | |
| return image_paths, seed, f"{duration:.2f}", zip_path | |
| def run_lora( | |
| prompt: str, | |
| negative_prompt: str, | |
| use_negative_prompt: bool, | |
| seed: int, | |
| width: int, | |
| height: int, | |
| guidance_scale: float, | |
| randomize_seed: bool, | |
| num_inference_steps: int, | |
| num_images: int, | |
| zip_images: bool, | |
| selected_index: int, | |
| lora_scale: float, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if selected_index is None: | |
| raise gr.Error("You must select a LoRA before proceeding.🧨") | |
| selected_lora = loras[selected_index] | |
| lora_repo = selected_lora["repo"] | |
| trigger_word = selected_lora["trigger_word"] | |
| if trigger_word: | |
| prompt_mash = f"{trigger_word} {prompt}" | |
| else: | |
| prompt_mash = prompt | |
| final_negative_prompt = negative_prompt if use_negative_prompt else "" | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return generate_qwen( | |
| prompt=prompt_mash, | |
| negative_prompt=final_negative_prompt, | |
| seed=seed, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| randomize_seed=False, # Already handled | |
| num_inference_steps=num_inference_steps, | |
| num_images=num_images, | |
| zip_images=zip_images, | |
| lora_input=lora_repo, | |
| lora_scale=lora_scale, | |
| progress=progress, | |
| ) | |
| css = ''' | |
| #gen_btn{height: 100%} | |
| #gen_column{align-self: stretch} | |
| #title{text-align: center} | |
| #title h1{font-size: 3em; display:inline-flex; align-items:center} | |
| #title img{width: 100px; margin-right: 0.5em} | |
| #gallery .grid-wrap{height: 10vh} | |
| #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%} | |
| .card_internal{display: flex;height: 100px;margin-top: .5em} | |
| .card_internal img{margin-right: 1em} | |
| .styler{--form-gap-width: 0px !important} | |
| #progress{height:30px} | |
| #progress .generating{display:none} | |
| .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px} | |
| .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out} | |
| ''' | |
| with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app: | |
| title = gr.HTML("""<h1>Qwen Image LoRA DLC ❤️🔥</h1>""", elem_id="title") | |
| selected_index = gr.State(None) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| prompt = gr.Textbox(label="Prompt", lines=1, placeholder="✦︎ Choose the LoRA and type the prompt") | |
| with gr.Column(scale=1, elem_id="gen_column"): | |
| generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
| with gr.Row(): | |
| with gr.Column(): | |
| selected_info = gr.Markdown("") | |
| gallery = gr.Gallery( | |
| [(item["image"], item["title"]) for item in loras], | |
| label="Qwen LoRA DLC's", | |
| allow_preview=False, | |
| columns=3, | |
| elem_id="gallery", | |
| show_share_button=False | |
| ) | |
| with gr.Group(): | |
| custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Qwen-Image-Sketch-Smudge") | |
| gr.Markdown("[Check the list of Qwen LoRA's](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list") | |
| custom_lora_info = gr.HTML(visible=False) | |
| custom_lora_button = gr.Button("Remove custom LoRA", visible=False) | |
| with gr.Column(): | |
| result = gr.Gallery(label="Generated Images", columns=1, show_label=False, preview=True) | |
| with gr.Row(): | |
| aspect_ratio = gr.Dropdown( | |
| label="Aspect Ratio", | |
| choices=list(aspect_ratios.keys()), | |
| value="1:1", | |
| ) | |
| with gr.Row(): | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=48) | |
| with gr.Row(): | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| use_negative_prompt = gr.Checkbox( | |
| label="Use negative prompt", | |
| value=True, | |
| ) | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| value="text, watermark, copyright, blurry, low resolution", | |
| ) | |
| with gr.Row(): | |
| cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=4.0) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=50) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1328) | |
| height = gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1328) | |
| with gr.Row(): | |
| num_images = gr.Slider(label="Number of Images", minimum=1, maximum=5, step=1, value=1) | |
| zip_images = gr.Checkbox(label="Zip generated images", value=False) | |
| with gr.Row(): | |
| randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
| lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0) | |
| # Output information | |
| with gr.Row(): | |
| seed_display = gr.Textbox(label="Seed used", interactive=False) | |
| generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False) | |
| zip_file = gr.File(label="Download ZIP") | |
| # Update aspect ratio | |
| def set_dimensions(ar): | |
| w, h = aspect_ratios[ar] | |
| return gr.update(value=w), gr.update(value=h) | |
| aspect_ratio.change( | |
| fn=set_dimensions, | |
| inputs=aspect_ratio, | |
| outputs=[width, height] | |
| ) | |
| # Negative prompt visibility | |
| use_negative_prompt.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=use_negative_prompt, | |
| outputs=negative_prompt | |
| ) | |
| gallery.select( | |
| update_selection, | |
| inputs=[width, height], | |
| outputs=[prompt, selected_info, selected_index, width, height] | |
| ) | |
| custom_lora.input( | |
| add_custom_lora, | |
| inputs=[custom_lora], | |
| outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt] | |
| ) | |
| custom_lora_button.click( | |
| remove_custom_lora, | |
| outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora] | |
| ) | |
| gr.on( | |
| triggers=[generate_button.click, prompt.submit], | |
| fn=run_lora, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| use_negative_prompt, | |
| seed, | |
| width, | |
| height, | |
| #guidance_scale, | |
| randomize_seed, | |
| steps, | |
| num_images, | |
| zip_images, | |
| selected_index, | |
| lora_scale, | |
| ], | |
| outputs=[result, seed_display, generation_time, zip_file] | |
| ) | |
| app.queue() | |
| app.launch(share=False, ssr_mode=False, show_error=True) |