File size: 14,893 Bytes
914b436 6b5431c 914b436 ea19061 914b436 ea19061 914b436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import pandas as pd
import gradio as gr
from fpdf import FPDF
from fpdf import enums
import tempfile
import os
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
# --- PDF Generation Helper Function (Unchanged) ---
def create_pdf_report(text_content):
"""
Generates a PDF file from a given text string.
"""
try:
temp_dir = tempfile.gettempdir()
pdf_path = os.path.join(
temp_dir, next(tempfile._get_candidate_names()) + ".pdf"
)
pdf = FPDF()
pdf.add_page()
pdf.set_font("Courier", size=10)
pdf.set_font("Courier", "B", 16)
pdf.cell(
0,
10,
"SaaS Metrics Analysis Report",
0,
new_x=enums.XPos.LMARGIN,
new_y=enums.YPos.NEXT,
)
pdf.ln(10)
pdf.set_font("Courier", size=10)
encoded_text = text_content.encode("latin-1", "replace").decode("latin-1")
pdf.multi_cell(0, 5, text=encoded_text)
pdf.output(pdf_path)
return pdf_path
except Exception as e:
print(f"Error creating PDF: {e}")
return None
# --- Visualization Helper Function ---
def create_visualizations(df):
"""
Generates matplotlib plots from the dataframe.
"""
try:
# Ensure plots are closed to prevent memory issues in long-running apps
plt.close("all")
# --- Plot 1: MRR Trend ---
fig1, ax1 = plt.subplots(figsize=(10, 5))
ax1.plot(df["Date"], df["MRR_End"], marker="o", linestyle="-", color="#1E88E5")
ax1.set_title("Monthly Recurring Revenue (MRR) Trend", fontsize=14)
ax1.set_xlabel("Date", fontsize=12)
ax1.set_ylabel("MRR ($)", fontsize=12)
ax1.grid(True, which="both", linestyle="--", linewidth=0.5)
ax1.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m"))
ax1.tick_params(axis="x", rotation=45)
fig1.tight_layout()
# --- Plot 2: Customer Growth ---
fig2, ax2 = plt.subplots(figsize=(10, 5))
ax2.plot(
df["Date"],
df["Total_Customers_End"],
marker="o",
linestyle="-",
color="#43A047",
)
ax2.set_title("Customer Growth Trend", fontsize=14)
ax2.set_xlabel("Date", fontsize=12)
ax2.set_ylabel("Total Customers", fontsize=12)
ax2.grid(True, which="both", linestyle="--", linewidth=0.5)
ax2.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m"))
ax2.tick_params(axis="x", rotation=45)
fig2.tight_layout()
# --- Plot 3: LTV vs CAC (Last Month) ---
last_month = df.iloc[-1]
mrr_now = last_month["MRR_End"]
active_accounts = last_month["Total_Customers_End"]
arpa_monthly = calculate_arpa(mrr_now, active_accounts)
# customer_churn_rate_monthly = calculate_customer_churn_rate(
# last_month["Churned_Customers"], last_month["Total_Customers_Start"]
# )
gross_rev_churn_rate_monthly = calculate_gross_revenue_churn_rate(
last_month["Churned_Revenue"], last_month["MRR_Start"]
)
gross_margin_monthly = calculate_gross_margin(
last_month["Total_Revenue"], last_month["COGS"]
)
ltv = calculate_ltv(
arpa_monthly, gross_margin_monthly, gross_rev_churn_rate_monthly
)
cac_monthly = calculate_cac(
last_month["Sales_And_Marketing_Spend"], last_month["New_Customers"]
)
fig3, ax3 = plt.subplots(figsize=(8, 5))
metrics = ["LTV (Lifetime Value)", "CAC (Acquisition Cost)"]
values = [ltv, cac_monthly]
bars = ax3.bar(metrics, values, color=["#43A047", "#E53935"])
ax3.set_title(
f"LTV vs. CAC for {last_month['Date'].strftime('%Y-%m')}", fontsize=14
)
ax3.set_ylabel("Value ($)", fontsize=12)
# Add value labels on top of bars
for bar in bars:
yval = bar.get_height()
ax3.text(
bar.get_x() + bar.get_width() / 2.0,
yval,
f"${yval:,.0f}",
va="bottom",
ha="center",
)
fig3.tight_layout()
# --- Plot 4: Net Revenue Retention (NRR) Trend ---
# Calculate NRR for each row if it's not already there
df["NRR"] = df.apply(
lambda row: calculate_nrr(
row["MRR_Start"], row["Expansion_Revenue"], row["Churned_Revenue"]
),
axis=1,
)
fig4, ax4 = plt.subplots(figsize=(10, 5))
ax4.plot(df["Date"], df["NRR"], marker="o", linestyle="-", color="#8E24AA")
ax4.axhline(y=1.0, color="grey", linestyle="--", label="100% Benchmark")
ax4.set_title("Net Revenue Retention (NRR) Trend", fontsize=14)
ax4.set_xlabel("Date", fontsize=12)
ax4.set_ylabel("NRR", fontsize=12)
ax4.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: f"{y:.0%}"))
ax4.grid(True, which="both", linestyle="--", linewidth=0.5)
ax4.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m"))
ax4.tick_params(axis="x", rotation=45)
ax4.legend()
fig4.tight_layout()
return fig1, fig2, fig3, fig4
except Exception as e:
print(f"Error creating visualizations: {e}")
return None, None, None, None
# --- Core SaaS Metrics Functions (Unchanged) ---
def calculate_arr(mrr):
return mrr * 12
def calculate_yoy_growth(current, prior):
return (current - prior) / prior if prior > 0 else 0
def calculate_sde(revenue, cogs, op_ex, owner_comp):
return revenue - cogs - op_ex + owner_comp
def calculate_valuation_revenue(arr, multiple):
return arr * multiple
def calculate_valuation_sde(sde, multiple):
return sde * multiple
def calculate_valuation_ebitda(ebitda, multiple):
return ebitda * multiple
def calculate_rule_of_40(growth_percent, margin_percent):
return growth_percent + margin_percent
def calculate_arpa(mrr, customers):
return mrr / customers if customers > 0 else 0
def calculate_customer_churn_rate(churned, start):
return churned / start if start > 0 else 0
def calculate_gross_revenue_churn_rate(churned_rev, mrr_start):
return churned_rev / mrr_start if mrr_start > 0 else 0
def calculate_net_revenue_churn_rate(churned_rev, expansion_rev, mrr_start):
return (churned_rev - expansion_rev) / mrr_start if mrr_start > 0 else 0
def calculate_nrr(mrr_start, expansion, churned):
return (mrr_start + expansion - churned) / mrr_start if mrr_start > 0 else 0
def calculate_cac(sm_spend, new):
return sm_spend / new if new > 0 else 0
def calculate_gross_margin(rev, cogs):
return (rev - cogs) / rev if rev > 0 else 0
def calculate_customer_lifetime(churn_rate):
return 1 / churn_rate if churn_rate > 0 else 0
def calculate_ltv(arpa, margin, rev_churn):
return arpa * margin / rev_churn if rev_churn > 0 else 0
def calculate_ltv_cac_ratio(ltv, cac):
return ltv / cac if cac > 0 else 0
def calculate_cac_payback_period(cac, arpa, margin):
return cac / (arpa * margin) if arpa * margin > 0 else 0
# --- Modified Main Analysis Function ---
def analyze_csv(file, revenue_multiple=6.0, sde_multiple=4.0, ebitda_multiple=5.5):
"""
Analyzes the uploaded CSV and returns a text summary, a PDF, and plots.
"""
if file is None:
return "Please upload a CSV file.", None, None, None, None, None
try:
df = pd.read_csv(file)
df["Date"] = pd.to_datetime(df["Date"])
if len(df) < 13:
return (
"Insufficient data in CSV. Need at least 13 months for full analysis.",
None,
None,
None,
None,
None,
)
# --- Generate Visualizations ---
plot1, plot2, plot3, plot4 = create_visualizations(df)
# --- Set Analysis Period and Assumptions ---
last_month = df.iloc[-1]
last_12_months = df.iloc[-13:-1]
prior_12_months = df.iloc[:12] if len(df) >= 24 else df.iloc[:-13]
output = []
# --- Calculate Annual Metrics ---
output.append("=" * 50)
output.append(
f"ANALYSIS FOR LAST 12 MONTHS ({last_12_months['Date'].min().strftime('%Y-%m')} to {last_12_months['Date'].max().strftime('%Y-%m')})"
)
output.append("=" * 50)
total_revenue_last_12m = last_12_months["Total_Revenue"].sum()
total_cogs_last_12m = last_12_months["COGS"].sum()
total_opex_last_12m = last_12_months["OpEx"].sum()
total_owner_comp_last_12m = last_12_months["Owner_Compensation"].sum()
total_sm_spend_last_12m = last_12_months["Sales_And_Marketing_Spend"].sum()
mrr_end_of_year = last_12_months.iloc[-1]["MRR_End"]
arr_current = calculate_arr(mrr_end_of_year)
arr_prior = calculate_arr(prior_12_months.iloc[-1]["MRR_End"])
yoy_growth = calculate_yoy_growth(arr_current, arr_prior)
output.append(f"Annual Recurring Revenue (ARR): ${arr_current:,.2f}")
output.append(f"YoY ARR Growth: {yoy_growth:.2%}")
sde_annual = calculate_sde(
total_revenue_last_12m,
total_cogs_last_12m,
(total_opex_last_12m + total_sm_spend_last_12m),
total_owner_comp_last_12m,
)
ebitda_annual = (
total_revenue_last_12m
- total_cogs_last_12m
- total_opex_last_12m
- total_sm_spend_last_12m
- total_owner_comp_last_12m
)
output.append(f"Seller's Discretionary Earnings (SDE): ${sde_annual:,.2f}")
output.append(f"EBITDA: ${ebitda_annual:,.2f}")
output.append("\n--- Valuations ---")
output.append(
f"Revenue-Based Valuation ({revenue_multiple:.1f}x ARR): ${calculate_valuation_revenue(arr_current, revenue_multiple):,.2f}"
)
output.append(
f"SDE-Based Valuation ({sde_multiple:.1f}x SDE): ${calculate_valuation_sde(sde_annual, sde_multiple):,.2f}"
)
output.append(
f"EBITDA-Based Valuation ({ebitda_multiple:.1f}x EBITDA): ${calculate_valuation_ebitda(ebitda_annual, ebitda_multiple):,.2f}"
)
ebitda_margin_annual = (
ebitda_annual / total_revenue_last_12m if total_revenue_last_12m > 0 else 0
)
rule_of_40_score = calculate_rule_of_40(
yoy_growth * 100, ebitda_margin_annual * 100
)
output.append("\n--- Health Metrics ---")
output.append(f"EBITDA Margin: {ebitda_margin_annual:.2%}")
output.append(
f"Rule of 40 Score: {rule_of_40_score:.2f} (Target > 40 is healthy)"
)
# --- Calculate Monthly Metrics ---
output.append("\n" + "=" * 50)
output.append(
f"ANALYSIS FOR LATEST MONTH ({last_month['Date'].strftime('%Y-%m')})"
)
output.append("=" * 50)
mrr_now = last_month["MRR_End"]
arpa_monthly = calculate_arpa(mrr_now, last_month["Total_Customers_End"])
customer_churn_rate_monthly = calculate_customer_churn_rate(
last_month["Churned_Customers"], last_month["Total_Customers_Start"]
)
gross_rev_churn_rate_monthly = calculate_gross_revenue_churn_rate(
last_month["Churned_Revenue"], last_month["MRR_Start"]
)
net_rev_churn_rate_monthly = calculate_net_revenue_churn_rate(
last_month["Churned_Revenue"],
last_month["Expansion_Revenue"],
last_month["MRR_Start"],
)
nrr_monthly = calculate_nrr(
last_month["MRR_Start"],
last_month["Expansion_Revenue"],
last_month["Churned_Revenue"],
)
output.append("--- Revenue & Churn ---")
output.append(f"Average Revenue Per Account (ARPA): ${arpa_monthly:,.2f}")
output.append(f"Customer Churn Rate: {customer_churn_rate_monthly:.2%}")
output.append(f"Gross Revenue Churn Rate: {gross_rev_churn_rate_monthly:.2%}")
output.append(f"Net Revenue Churn Rate: {net_rev_churn_rate_monthly:.2%}")
output.append(f"Net Revenue Retention (NRR): {nrr_monthly:.2%}")
cac_monthly = calculate_cac(
last_month["Sales_And_Marketing_Spend"], last_month["New_Customers"]
)
gross_margin_monthly = calculate_gross_margin(
last_month["Total_Revenue"], last_month["COGS"]
)
customer_lifetime_months = calculate_customer_lifetime(
customer_churn_rate_monthly
)
ltv = calculate_ltv(
arpa_monthly, gross_margin_monthly, gross_rev_churn_rate_monthly
)
ltv_cac_ratio = calculate_ltv_cac_ratio(ltv, cac_monthly)
payback_period_months = calculate_cac_payback_period(
cac_monthly, arpa_monthly, gross_margin_monthly
)
output.append("\n--- Unit Economics ---")
output.append(f"Gross Margin: {gross_margin_monthly:.2%}")
output.append(f"Customer Acquisition Cost (CAC): ${cac_monthly:,.2f}")
output.append(f"Customer Lifetime: {customer_lifetime_months:.1f} months")
output.append(f"Customer Lifetime Value (LTV): ${ltv:,.2f}")
output.append(f"LTV:CAC Ratio: {ltv_cac_ratio:.2f}:1 (Target > 3:1 is healthy)")
output.append(
f"CAC Payback Period: {payback_period_months:.1f} months (Target < 12 is healthy)"
)
analysis_text = "\n".join(output)
pdf_file_path = create_pdf_report(analysis_text)
return analysis_text, pdf_file_path, plot1, plot2, plot3, plot4
except Exception as e:
return f"Error processing file: {str(e)}", None, None, None, None, None
# --- Updated Gradio Interface ---
demo = gr.Interface(
fn=analyze_csv,
inputs=[
gr.File(label="Upload SaaS Metrics CSV File", file_types=[".csv"]),
gr.Number(label="Revenue Multiple", value=6.0),
gr.Number(label="SDE Multiple", value=4.0),
gr.Number(label="EBITDA Multiple", value=5.5),
],
outputs=[
gr.Textbox(label="Analysis Results", lines=20),
gr.File(label="Download PDF Report"),
gr.Plot(label="MRR Trend"),
gr.Plot(label="Customer Growth Trend"),
gr.Plot(label="LTV vs. CAC (Last Month)"),
gr.Plot(label="Net Revenue Retention (NRR) Trend"),
],
title="SaaS Metrics Analyzer with Visualizations",
description="Upload a CSV file with SaaS metrics data. The app will analyze the last 12 months, the latest month, generate key visualizations, and produce a downloadable PDF report.",
allow_flagging="never",
examples=[["demo.csv", 6.0, 4.0, 5.5]],
)
if __name__ == "__main__":
demo.launch()
|