Yehor's picture
Update app.py
ea19061 verified
raw
history blame
14.9 kB
import pandas as pd
import gradio as gr
from fpdf import FPDF
from fpdf import enums
import tempfile
import os
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
# --- PDF Generation Helper Function (Unchanged) ---
def create_pdf_report(text_content):
"""
Generates a PDF file from a given text string.
"""
try:
temp_dir = tempfile.gettempdir()
pdf_path = os.path.join(
temp_dir, next(tempfile._get_candidate_names()) + ".pdf"
)
pdf = FPDF()
pdf.add_page()
pdf.set_font("Courier", size=10)
pdf.set_font("Courier", "B", 16)
pdf.cell(
0,
10,
"SaaS Metrics Analysis Report",
0,
new_x=enums.XPos.LMARGIN,
new_y=enums.YPos.NEXT,
)
pdf.ln(10)
pdf.set_font("Courier", size=10)
encoded_text = text_content.encode("latin-1", "replace").decode("latin-1")
pdf.multi_cell(0, 5, text=encoded_text)
pdf.output(pdf_path)
return pdf_path
except Exception as e:
print(f"Error creating PDF: {e}")
return None
# --- Visualization Helper Function ---
def create_visualizations(df):
"""
Generates matplotlib plots from the dataframe.
"""
try:
# Ensure plots are closed to prevent memory issues in long-running apps
plt.close("all")
# --- Plot 1: MRR Trend ---
fig1, ax1 = plt.subplots(figsize=(10, 5))
ax1.plot(df["Date"], df["MRR_End"], marker="o", linestyle="-", color="#1E88E5")
ax1.set_title("Monthly Recurring Revenue (MRR) Trend", fontsize=14)
ax1.set_xlabel("Date", fontsize=12)
ax1.set_ylabel("MRR ($)", fontsize=12)
ax1.grid(True, which="both", linestyle="--", linewidth=0.5)
ax1.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m"))
ax1.tick_params(axis="x", rotation=45)
fig1.tight_layout()
# --- Plot 2: Customer Growth ---
fig2, ax2 = plt.subplots(figsize=(10, 5))
ax2.plot(
df["Date"],
df["Total_Customers_End"],
marker="o",
linestyle="-",
color="#43A047",
)
ax2.set_title("Customer Growth Trend", fontsize=14)
ax2.set_xlabel("Date", fontsize=12)
ax2.set_ylabel("Total Customers", fontsize=12)
ax2.grid(True, which="both", linestyle="--", linewidth=0.5)
ax2.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m"))
ax2.tick_params(axis="x", rotation=45)
fig2.tight_layout()
# --- Plot 3: LTV vs CAC (Last Month) ---
last_month = df.iloc[-1]
mrr_now = last_month["MRR_End"]
active_accounts = last_month["Total_Customers_End"]
arpa_monthly = calculate_arpa(mrr_now, active_accounts)
# customer_churn_rate_monthly = calculate_customer_churn_rate(
# last_month["Churned_Customers"], last_month["Total_Customers_Start"]
# )
gross_rev_churn_rate_monthly = calculate_gross_revenue_churn_rate(
last_month["Churned_Revenue"], last_month["MRR_Start"]
)
gross_margin_monthly = calculate_gross_margin(
last_month["Total_Revenue"], last_month["COGS"]
)
ltv = calculate_ltv(
arpa_monthly, gross_margin_monthly, gross_rev_churn_rate_monthly
)
cac_monthly = calculate_cac(
last_month["Sales_And_Marketing_Spend"], last_month["New_Customers"]
)
fig3, ax3 = plt.subplots(figsize=(8, 5))
metrics = ["LTV (Lifetime Value)", "CAC (Acquisition Cost)"]
values = [ltv, cac_monthly]
bars = ax3.bar(metrics, values, color=["#43A047", "#E53935"])
ax3.set_title(
f"LTV vs. CAC for {last_month['Date'].strftime('%Y-%m')}", fontsize=14
)
ax3.set_ylabel("Value ($)", fontsize=12)
# Add value labels on top of bars
for bar in bars:
yval = bar.get_height()
ax3.text(
bar.get_x() + bar.get_width() / 2.0,
yval,
f"${yval:,.0f}",
va="bottom",
ha="center",
)
fig3.tight_layout()
# --- Plot 4: Net Revenue Retention (NRR) Trend ---
# Calculate NRR for each row if it's not already there
df["NRR"] = df.apply(
lambda row: calculate_nrr(
row["MRR_Start"], row["Expansion_Revenue"], row["Churned_Revenue"]
),
axis=1,
)
fig4, ax4 = plt.subplots(figsize=(10, 5))
ax4.plot(df["Date"], df["NRR"], marker="o", linestyle="-", color="#8E24AA")
ax4.axhline(y=1.0, color="grey", linestyle="--", label="100% Benchmark")
ax4.set_title("Net Revenue Retention (NRR) Trend", fontsize=14)
ax4.set_xlabel("Date", fontsize=12)
ax4.set_ylabel("NRR", fontsize=12)
ax4.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: f"{y:.0%}"))
ax4.grid(True, which="both", linestyle="--", linewidth=0.5)
ax4.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m"))
ax4.tick_params(axis="x", rotation=45)
ax4.legend()
fig4.tight_layout()
return fig1, fig2, fig3, fig4
except Exception as e:
print(f"Error creating visualizations: {e}")
return None, None, None, None
# --- Core SaaS Metrics Functions (Unchanged) ---
def calculate_arr(mrr):
return mrr * 12
def calculate_yoy_growth(current, prior):
return (current - prior) / prior if prior > 0 else 0
def calculate_sde(revenue, cogs, op_ex, owner_comp):
return revenue - cogs - op_ex + owner_comp
def calculate_valuation_revenue(arr, multiple):
return arr * multiple
def calculate_valuation_sde(sde, multiple):
return sde * multiple
def calculate_valuation_ebitda(ebitda, multiple):
return ebitda * multiple
def calculate_rule_of_40(growth_percent, margin_percent):
return growth_percent + margin_percent
def calculate_arpa(mrr, customers):
return mrr / customers if customers > 0 else 0
def calculate_customer_churn_rate(churned, start):
return churned / start if start > 0 else 0
def calculate_gross_revenue_churn_rate(churned_rev, mrr_start):
return churned_rev / mrr_start if mrr_start > 0 else 0
def calculate_net_revenue_churn_rate(churned_rev, expansion_rev, mrr_start):
return (churned_rev - expansion_rev) / mrr_start if mrr_start > 0 else 0
def calculate_nrr(mrr_start, expansion, churned):
return (mrr_start + expansion - churned) / mrr_start if mrr_start > 0 else 0
def calculate_cac(sm_spend, new):
return sm_spend / new if new > 0 else 0
def calculate_gross_margin(rev, cogs):
return (rev - cogs) / rev if rev > 0 else 0
def calculate_customer_lifetime(churn_rate):
return 1 / churn_rate if churn_rate > 0 else 0
def calculate_ltv(arpa, margin, rev_churn):
return arpa * margin / rev_churn if rev_churn > 0 else 0
def calculate_ltv_cac_ratio(ltv, cac):
return ltv / cac if cac > 0 else 0
def calculate_cac_payback_period(cac, arpa, margin):
return cac / (arpa * margin) if arpa * margin > 0 else 0
# --- Modified Main Analysis Function ---
def analyze_csv(file, revenue_multiple=6.0, sde_multiple=4.0, ebitda_multiple=5.5):
"""
Analyzes the uploaded CSV and returns a text summary, a PDF, and plots.
"""
if file is None:
return "Please upload a CSV file.", None, None, None, None, None
try:
df = pd.read_csv(file)
df["Date"] = pd.to_datetime(df["Date"])
if len(df) < 13:
return (
"Insufficient data in CSV. Need at least 13 months for full analysis.",
None,
None,
None,
None,
None,
)
# --- Generate Visualizations ---
plot1, plot2, plot3, plot4 = create_visualizations(df)
# --- Set Analysis Period and Assumptions ---
last_month = df.iloc[-1]
last_12_months = df.iloc[-13:-1]
prior_12_months = df.iloc[:12] if len(df) >= 24 else df.iloc[:-13]
output = []
# --- Calculate Annual Metrics ---
output.append("=" * 50)
output.append(
f"ANALYSIS FOR LAST 12 MONTHS ({last_12_months['Date'].min().strftime('%Y-%m')} to {last_12_months['Date'].max().strftime('%Y-%m')})"
)
output.append("=" * 50)
total_revenue_last_12m = last_12_months["Total_Revenue"].sum()
total_cogs_last_12m = last_12_months["COGS"].sum()
total_opex_last_12m = last_12_months["OpEx"].sum()
total_owner_comp_last_12m = last_12_months["Owner_Compensation"].sum()
total_sm_spend_last_12m = last_12_months["Sales_And_Marketing_Spend"].sum()
mrr_end_of_year = last_12_months.iloc[-1]["MRR_End"]
arr_current = calculate_arr(mrr_end_of_year)
arr_prior = calculate_arr(prior_12_months.iloc[-1]["MRR_End"])
yoy_growth = calculate_yoy_growth(arr_current, arr_prior)
output.append(f"Annual Recurring Revenue (ARR): ${arr_current:,.2f}")
output.append(f"YoY ARR Growth: {yoy_growth:.2%}")
sde_annual = calculate_sde(
total_revenue_last_12m,
total_cogs_last_12m,
(total_opex_last_12m + total_sm_spend_last_12m),
total_owner_comp_last_12m,
)
ebitda_annual = (
total_revenue_last_12m
- total_cogs_last_12m
- total_opex_last_12m
- total_sm_spend_last_12m
- total_owner_comp_last_12m
)
output.append(f"Seller's Discretionary Earnings (SDE): ${sde_annual:,.2f}")
output.append(f"EBITDA: ${ebitda_annual:,.2f}")
output.append("\n--- Valuations ---")
output.append(
f"Revenue-Based Valuation ({revenue_multiple:.1f}x ARR): ${calculate_valuation_revenue(arr_current, revenue_multiple):,.2f}"
)
output.append(
f"SDE-Based Valuation ({sde_multiple:.1f}x SDE): ${calculate_valuation_sde(sde_annual, sde_multiple):,.2f}"
)
output.append(
f"EBITDA-Based Valuation ({ebitda_multiple:.1f}x EBITDA): ${calculate_valuation_ebitda(ebitda_annual, ebitda_multiple):,.2f}"
)
ebitda_margin_annual = (
ebitda_annual / total_revenue_last_12m if total_revenue_last_12m > 0 else 0
)
rule_of_40_score = calculate_rule_of_40(
yoy_growth * 100, ebitda_margin_annual * 100
)
output.append("\n--- Health Metrics ---")
output.append(f"EBITDA Margin: {ebitda_margin_annual:.2%}")
output.append(
f"Rule of 40 Score: {rule_of_40_score:.2f} (Target > 40 is healthy)"
)
# --- Calculate Monthly Metrics ---
output.append("\n" + "=" * 50)
output.append(
f"ANALYSIS FOR LATEST MONTH ({last_month['Date'].strftime('%Y-%m')})"
)
output.append("=" * 50)
mrr_now = last_month["MRR_End"]
arpa_monthly = calculate_arpa(mrr_now, last_month["Total_Customers_End"])
customer_churn_rate_monthly = calculate_customer_churn_rate(
last_month["Churned_Customers"], last_month["Total_Customers_Start"]
)
gross_rev_churn_rate_monthly = calculate_gross_revenue_churn_rate(
last_month["Churned_Revenue"], last_month["MRR_Start"]
)
net_rev_churn_rate_monthly = calculate_net_revenue_churn_rate(
last_month["Churned_Revenue"],
last_month["Expansion_Revenue"],
last_month["MRR_Start"],
)
nrr_monthly = calculate_nrr(
last_month["MRR_Start"],
last_month["Expansion_Revenue"],
last_month["Churned_Revenue"],
)
output.append("--- Revenue & Churn ---")
output.append(f"Average Revenue Per Account (ARPA): ${arpa_monthly:,.2f}")
output.append(f"Customer Churn Rate: {customer_churn_rate_monthly:.2%}")
output.append(f"Gross Revenue Churn Rate: {gross_rev_churn_rate_monthly:.2%}")
output.append(f"Net Revenue Churn Rate: {net_rev_churn_rate_monthly:.2%}")
output.append(f"Net Revenue Retention (NRR): {nrr_monthly:.2%}")
cac_monthly = calculate_cac(
last_month["Sales_And_Marketing_Spend"], last_month["New_Customers"]
)
gross_margin_monthly = calculate_gross_margin(
last_month["Total_Revenue"], last_month["COGS"]
)
customer_lifetime_months = calculate_customer_lifetime(
customer_churn_rate_monthly
)
ltv = calculate_ltv(
arpa_monthly, gross_margin_monthly, gross_rev_churn_rate_monthly
)
ltv_cac_ratio = calculate_ltv_cac_ratio(ltv, cac_monthly)
payback_period_months = calculate_cac_payback_period(
cac_monthly, arpa_monthly, gross_margin_monthly
)
output.append("\n--- Unit Economics ---")
output.append(f"Gross Margin: {gross_margin_monthly:.2%}")
output.append(f"Customer Acquisition Cost (CAC): ${cac_monthly:,.2f}")
output.append(f"Customer Lifetime: {customer_lifetime_months:.1f} months")
output.append(f"Customer Lifetime Value (LTV): ${ltv:,.2f}")
output.append(f"LTV:CAC Ratio: {ltv_cac_ratio:.2f}:1 (Target > 3:1 is healthy)")
output.append(
f"CAC Payback Period: {payback_period_months:.1f} months (Target < 12 is healthy)"
)
analysis_text = "\n".join(output)
pdf_file_path = create_pdf_report(analysis_text)
return analysis_text, pdf_file_path, plot1, plot2, plot3, plot4
except Exception as e:
return f"Error processing file: {str(e)}", None, None, None, None, None
# --- Updated Gradio Interface ---
demo = gr.Interface(
fn=analyze_csv,
inputs=[
gr.File(label="Upload SaaS Metrics CSV File", file_types=[".csv"]),
gr.Number(label="Revenue Multiple", value=6.0),
gr.Number(label="SDE Multiple", value=4.0),
gr.Number(label="EBITDA Multiple", value=5.5),
],
outputs=[
gr.Textbox(label="Analysis Results", lines=20),
gr.File(label="Download PDF Report"),
gr.Plot(label="MRR Trend"),
gr.Plot(label="Customer Growth Trend"),
gr.Plot(label="LTV vs. CAC (Last Month)"),
gr.Plot(label="Net Revenue Retention (NRR) Trend"),
],
title="SaaS Metrics Analyzer with Visualizations",
description="Upload a CSV file with SaaS metrics data. The app will analyze the last 12 months, the latest month, generate key visualizations, and produce a downloadable PDF report.",
allow_flagging="never",
examples=[["demo.csv", 6.0, 4.0, 5.5]],
)
if __name__ == "__main__":
demo.launch()