metadata
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:971
- loss:OnlineContrastiveLoss
widget:
- source_sentence: Steps to bake a pie
sentences:
- How to bake a pie?
- What are the ingredients of a pizza?
- How to create a business plan?
- source_sentence: What are the benefits of yoga?
sentences:
- If I combine the yellow and blue colors, what color will I get?
- Can you help me understand this contract?
- What are the benefits of meditation?
- source_sentence: Capital city of Canada
sentences:
- What time does the movie start?
- Who is the President of the United States?
- What is the capital of Canada?
- source_sentence: Tell me about Shopify
sentences:
- Who discovered penicillin?
- Share info about Shopify
- Who invented the telephone?
- source_sentence: What is the melting point of ice at sea level?
sentences:
- What is the boiling point of water at sea level?
- Can you recommend a good restaurant nearby?
- Tell me a joke
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.6337448559670782
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.9370981454849243
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6735395189003436
name: Cosine F1
- type: cosine_f1_threshold
value: 0.9088578224182129
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5355191256830601
name: Cosine Precision
- type: cosine_recall
value: 0.9074074074074074
name: Cosine Recall
- type: cosine_ap
value: 0.6318945658459245
name: Cosine Ap
- type: dot_accuracy
value: 0.6337448559670782
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.9370982050895691
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6735395189003436
name: Dot F1
- type: dot_f1_threshold
value: 0.9088578224182129
name: Dot F1 Threshold
- type: dot_precision
value: 0.5355191256830601
name: Dot Precision
- type: dot_recall
value: 0.9074074074074074
name: Dot Recall
- type: dot_ap
value: 0.6318945658459245
name: Dot Ap
- type: manhattan_accuracy
value: 0.6378600823045267
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 5.581961631774902
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.6712802768166088
name: Manhattan F1
- type: manhattan_f1_threshold
value: 6.53279972076416
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5359116022099447
name: Manhattan Precision
- type: manhattan_recall
value: 0.8981481481481481
name: Manhattan Recall
- type: manhattan_ap
value: 0.642597262545426
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.6337448559670782
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.3546881079673767
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.6735395189003436
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.42694616317749023
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.5355191256830601
name: Euclidean Precision
- type: euclidean_recall
value: 0.9074074074074074
name: Euclidean Recall
- type: euclidean_ap
value: 0.6318945658459245
name: Euclidean Ap
- type: max_accuracy
value: 0.6378600823045267
name: Max Accuracy
- type: max_accuracy_threshold
value: 5.581961631774902
name: Max Accuracy Threshold
- type: max_f1
value: 0.6735395189003436
name: Max F1
- type: max_f1_threshold
value: 6.53279972076416
name: Max F1 Threshold
- type: max_precision
value: 0.5359116022099447
name: Max Precision
- type: max_recall
value: 0.9074074074074074
name: Max Recall
- type: max_ap
value: 0.642597262545426
name: Max Ap
- type: cosine_accuracy
value: 0.9423868312757202
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7851011753082275
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9363636363636363
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7851011753082275
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9196428571428571
name: Cosine Precision
- type: cosine_recall
value: 0.9537037037037037
name: Cosine Recall
- type: cosine_ap
value: 0.9629460493565268
name: Cosine Ap
- type: dot_accuracy
value: 0.9423868312757202
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.7851011753082275
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9363636363636363
name: Dot F1
- type: dot_f1_threshold
value: 0.7851011753082275
name: Dot F1 Threshold
- type: dot_precision
value: 0.9196428571428571
name: Dot Precision
- type: dot_recall
value: 0.9537037037037037
name: Dot Recall
- type: dot_ap
value: 0.9629460493565268
name: Dot Ap
- type: manhattan_accuracy
value: 0.9382716049382716
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 10.554386138916016
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9333333333333333
name: Manhattan F1
- type: manhattan_f1_threshold
value: 10.554386138916016
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8974358974358975
name: Manhattan Precision
- type: manhattan_recall
value: 0.9722222222222222
name: Manhattan Recall
- type: manhattan_ap
value: 0.9614448856056382
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9423868312757202
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6555726528167725
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9363636363636363
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6555726528167725
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9196428571428571
name: Euclidean Precision
- type: euclidean_recall
value: 0.9537037037037037
name: Euclidean Recall
- type: euclidean_ap
value: 0.9629460493565268
name: Euclidean Ap
- type: max_accuracy
value: 0.9423868312757202
name: Max Accuracy
- type: max_accuracy_threshold
value: 10.554386138916016
name: Max Accuracy Threshold
- type: max_f1
value: 0.9363636363636363
name: Max F1
- type: max_f1_threshold
value: 10.554386138916016
name: Max F1 Threshold
- type: max_precision
value: 0.9196428571428571
name: Max Precision
- type: max_recall
value: 0.9722222222222222
name: Max Recall
- type: max_ap
value: 0.9629460493565268
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.9423868312757202
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7851011753082275
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9363636363636363
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7851011753082275
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9196428571428571
name: Cosine Precision
- type: cosine_recall
value: 0.9537037037037037
name: Cosine Recall
- type: cosine_ap
value: 0.9629460493565268
name: Cosine Ap
- type: dot_accuracy
value: 0.9423868312757202
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.7851011753082275
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9363636363636363
name: Dot F1
- type: dot_f1_threshold
value: 0.7851011753082275
name: Dot F1 Threshold
- type: dot_precision
value: 0.9196428571428571
name: Dot Precision
- type: dot_recall
value: 0.9537037037037037
name: Dot Recall
- type: dot_ap
value: 0.9629460493565268
name: Dot Ap
- type: manhattan_accuracy
value: 0.9382716049382716
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 10.554386138916016
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9333333333333333
name: Manhattan F1
- type: manhattan_f1_threshold
value: 10.554386138916016
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8974358974358975
name: Manhattan Precision
- type: manhattan_recall
value: 0.9722222222222222
name: Manhattan Recall
- type: manhattan_ap
value: 0.9614448856056382
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9423868312757202
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6555726528167725
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9363636363636363
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6555726528167725
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9196428571428571
name: Euclidean Precision
- type: euclidean_recall
value: 0.9537037037037037
name: Euclidean Recall
- type: euclidean_ap
value: 0.9629460493565268
name: Euclidean Ap
- type: max_accuracy
value: 0.9423868312757202
name: Max Accuracy
- type: max_accuracy_threshold
value: 10.554386138916016
name: Max Accuracy Threshold
- type: max_f1
value: 0.9363636363636363
name: Max F1
- type: max_f1_threshold
value: 10.554386138916016
name: Max F1 Threshold
- type: max_precision
value: 0.9196428571428571
name: Max Precision
- type: max_recall
value: 0.9722222222222222
name: Max Recall
- type: max_ap
value: 0.9629460493565268
name: Max Ap
SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/multilingual-e5-small-pairclass-3")
# Run inference
sentences = [
'What is the melting point of ice at sea level?',
'What is the boiling point of water at sea level?',
'Can you recommend a good restaurant nearby?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.6337 |
| cosine_accuracy_threshold | 0.9371 |
| cosine_f1 | 0.6735 |
| cosine_f1_threshold | 0.9089 |
| cosine_precision | 0.5355 |
| cosine_recall | 0.9074 |
| cosine_ap | 0.6319 |
| dot_accuracy | 0.6337 |
| dot_accuracy_threshold | 0.9371 |
| dot_f1 | 0.6735 |
| dot_f1_threshold | 0.9089 |
| dot_precision | 0.5355 |
| dot_recall | 0.9074 |
| dot_ap | 0.6319 |
| manhattan_accuracy | 0.6379 |
| manhattan_accuracy_threshold | 5.582 |
| manhattan_f1 | 0.6713 |
| manhattan_f1_threshold | 6.5328 |
| manhattan_precision | 0.5359 |
| manhattan_recall | 0.8981 |
| manhattan_ap | 0.6426 |
| euclidean_accuracy | 0.6337 |
| euclidean_accuracy_threshold | 0.3547 |
| euclidean_f1 | 0.6735 |
| euclidean_f1_threshold | 0.4269 |
| euclidean_precision | 0.5355 |
| euclidean_recall | 0.9074 |
| euclidean_ap | 0.6319 |
| max_accuracy | 0.6379 |
| max_accuracy_threshold | 5.582 |
| max_f1 | 0.6735 |
| max_f1_threshold | 6.5328 |
| max_precision | 0.5359 |
| max_recall | 0.9074 |
| max_ap | 0.6426 |
Binary Classification
- Dataset:
pair-class-dev - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9424 |
| cosine_accuracy_threshold | 0.7851 |
| cosine_f1 | 0.9364 |
| cosine_f1_threshold | 0.7851 |
| cosine_precision | 0.9196 |
| cosine_recall | 0.9537 |
| cosine_ap | 0.9629 |
| dot_accuracy | 0.9424 |
| dot_accuracy_threshold | 0.7851 |
| dot_f1 | 0.9364 |
| dot_f1_threshold | 0.7851 |
| dot_precision | 0.9196 |
| dot_recall | 0.9537 |
| dot_ap | 0.9629 |
| manhattan_accuracy | 0.9383 |
| manhattan_accuracy_threshold | 10.5544 |
| manhattan_f1 | 0.9333 |
| manhattan_f1_threshold | 10.5544 |
| manhattan_precision | 0.8974 |
| manhattan_recall | 0.9722 |
| manhattan_ap | 0.9614 |
| euclidean_accuracy | 0.9424 |
| euclidean_accuracy_threshold | 0.6556 |
| euclidean_f1 | 0.9364 |
| euclidean_f1_threshold | 0.6556 |
| euclidean_precision | 0.9196 |
| euclidean_recall | 0.9537 |
| euclidean_ap | 0.9629 |
| max_accuracy | 0.9424 |
| max_accuracy_threshold | 10.5544 |
| max_f1 | 0.9364 |
| max_f1_threshold | 10.5544 |
| max_precision | 0.9196 |
| max_recall | 0.9722 |
| max_ap | 0.9629 |
Binary Classification
- Dataset:
pair-class-test - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9424 |
| cosine_accuracy_threshold | 0.7851 |
| cosine_f1 | 0.9364 |
| cosine_f1_threshold | 0.7851 |
| cosine_precision | 0.9196 |
| cosine_recall | 0.9537 |
| cosine_ap | 0.9629 |
| dot_accuracy | 0.9424 |
| dot_accuracy_threshold | 0.7851 |
| dot_f1 | 0.9364 |
| dot_f1_threshold | 0.7851 |
| dot_precision | 0.9196 |
| dot_recall | 0.9537 |
| dot_ap | 0.9629 |
| manhattan_accuracy | 0.9383 |
| manhattan_accuracy_threshold | 10.5544 |
| manhattan_f1 | 0.9333 |
| manhattan_f1_threshold | 10.5544 |
| manhattan_precision | 0.8974 |
| manhattan_recall | 0.9722 |
| manhattan_ap | 0.9614 |
| euclidean_accuracy | 0.9424 |
| euclidean_accuracy_threshold | 0.6556 |
| euclidean_f1 | 0.9364 |
| euclidean_f1_threshold | 0.6556 |
| euclidean_precision | 0.9196 |
| euclidean_recall | 0.9537 |
| euclidean_ap | 0.9629 |
| max_accuracy | 0.9424 |
| max_accuracy_threshold | 10.5544 |
| max_f1 | 0.9364 |
| max_f1_threshold | 10.5544 |
| max_precision | 0.9196 |
| max_recall | 0.9722 |
| max_ap | 0.9629 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 971 training samples
- Columns:
sentence2,sentence1, andlabel - Approximate statistics based on the first 1000 samples:
sentence2 sentence1 label type string string int details - min: 4 tokens
- mean: 10.12 tokens
- max: 22 tokens
- min: 6 tokens
- mean: 10.82 tokens
- max: 22 tokens
- 0: ~48.61%
- 1: ~51.39%
- Samples:
sentence2 sentence1 label Total number of bones in an adult human bodyHow many bones are in the human body?1What is the largest river in North America?What is the largest lake in North America?0What is the capital of Australia?What is the capital of New Zealand?0 - Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 243 evaluation samples
- Columns:
sentence2,sentence1, andlabel - Approximate statistics based on the first 1000 samples:
sentence2 sentence1 label type string string int details - min: 4 tokens
- mean: 10.09 tokens
- max: 20 tokens
- min: 6 tokens
- mean: 10.55 tokens
- max: 22 tokens
- 0: ~55.56%
- 1: ~44.44%
- Samples:
sentence2 sentence1 label What are the various forms of renewable energy?What are the different types of renewable energy?1Gravity discovererWho discovered gravity?1Can you help me write this report?Can you help me understand this report?0 - Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 32per_device_eval_batch_size: 32gradient_accumulation_steps: 2learning_rate: 3e-06weight_decay: 0.01num_train_epochs: 20lr_scheduler_type: reduce_lr_on_plateauwarmup_ratio: 0.1load_best_model_at_end: Trueoptim: adamw_torch_fused
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 2eval_accumulation_steps: Nonelearning_rate: 3e-06weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 20max_steps: -1lr_scheduler_type: reduce_lr_on_plateaulr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
|---|---|---|---|---|
| 0 | 0 | - | 0.6426 | - |
| 0.9677 | 15 | 3.1481 | 0.7843 | - |
| 2.0 | 31 | 2.1820 | 0.8692 | - |
| 2.9677 | 46 | 1.8185 | 0.9078 | - |
| 4.0 | 62 | 1.5769 | 0.9252 | - |
| 4.9677 | 77 | 1.4342 | 0.9310 | - |
| 6.0 | 93 | 1.3544 | 0.9357 | - |
| 6.9677 | 108 | 1.2630 | 0.9402 | - |
| 8.0 | 124 | 1.2120 | 0.9444 | - |
| 8.9677 | 139 | 1.1641 | 0.9454 | - |
| 10.0 | 155 | 1.0481 | 0.9464 | - |
| 10.9677 | 170 | 0.9324 | 0.9509 | - |
| 12.0 | 186 | 0.8386 | 0.9556 | - |
| 12.9677 | 201 | 0.7930 | 0.9577 | - |
| 14.0 | 217 | 0.7564 | 0.9599 | - |
| 14.9677 | 232 | 0.7480 | 0.9606 | - |
| 16.0 | 248 | 0.6733 | 0.9614 | - |
| 16.9677 | 263 | 0.6434 | 0.9621 | - |
| 18.0 | 279 | 0.6411 | 0.9630 | - |
| 18.9677 | 294 | 0.6383 | 0.9632 | - |
| 19.3548 | 300 | 0.6365 | 0.9629 | 0.9629 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}