File size: 37,280 Bytes
7ca7e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:132553
- loss:MultipleNegativesSymmetricRankingLoss
base_model: laion/clap-htsat-fused
widget:
- source_sentence: HE WAS OUT OF HIS MIND WITH SOMETHING HE OVERHEARD ABOUT EATING
    PEOPLE'S FLESH AND DRINKING BLOOD WHAT'S THE GOOD OF TALKING LIKE THAT
  sentences:
  - NESTORIUS WHO DEPENDED ON THE NEAR APPROACH OF HIS EASTERN FRIENDS PERSISTED LIKE
    HIS PREDECESSOR CHRYSOSTOM TO DISCLAIM THE JURISDICTION AND TO DISOBEY THE SUMMONS
    OF HIS ENEMIES THEY HASTENED HIS TRIAL AND HIS ACCUSER PRESIDED IN THE SEAT OF
    JUDGMENT
  - THEN BACK I TURNED MY FACE TO THOSE HIGH THINGS WHICH MOVED THEMSELVES TOWARDS
    US SO SEDATELY THEY HAD BEEN DISTANCED BY NEW WEDDED BRIDES
  - THE PROGRESS OF PRESIDENT DAVIS TO THE NEW CAPITAL SET IN THE VERY FACE OF THE
    FOE WAS TO BE ONE HUGE TRIUMPH OF FAITH AND LOYALTY
- source_sentence: I BELIEVE THE SERIOUSNESS OF THE AMERICANS ARISES PARTLY FROM THEIR
    PRIDE
  sentences:
  - YOU HAVE BEEN TO THE HOTEL HE BURST OUT YOU HAVE SEEN CATHERINE
  - WHAT DO YOU MEAN SIR
  - A HARSH LAUGH FROM COMRADE OSSIPON CUT THE TIRADE DEAD SHORT IN A SUDDEN FALTERING
    OF THE TONGUE AND A BEWILDERED UNSTEADINESS OF THE APOSTLE'S MILDLY EXALTED EYES
- source_sentence: BUT YOU OUGHT TO HAVE KNOWN THAT WE ARE ONLY HALF AN HOUR BEHIND
    YOU AT SYDENHAM IN THE MATTER OF NEWS
  sentences:
  - DOWN BELOW IN THE QUIET NARROW STREET MEASURED FOOTSTEPS APPROACHED THE HOUSE
    THEN DIED AWAY UNHURRIED AND FIRM AS IF THE PASSER BY HAD STARTED TO PACE OUT
    ALL ETERNITY FROM GAS LAMP TO GAS LAMP IN A NIGHT WITHOUT END AND THE DROWSY TICKING
    OF THE OLD CLOCK ON THE LANDING BECAME DISTINCTLY AUDIBLE IN THE BEDROOM
  - IT WAS A SUMMER NIGHT AND THE GUESTS WERE WANDERING IN AND OUT AT WILL AND THROUGH
    HOUSE AND GARDEN AMID LOVELY THINGS OF ALL COLORS AND ODORS
  - IF A MAN WERE SLAIN IN BATTLE IT WAS AN OLD CUSTOM TO PLACE HIS BODY AGAINST A
    TREE OR ROCK IN A SITTING POSITION ALWAYS FACING THE ENEMY TO INDICATE HIS UNDAUNTED
    DEFIANCE AND BRAVERY EVEN IN DEATH
- source_sentence: THE MERCHANT'S DAUGHTER AT FIRST DID NOT ANSWER BUT AS HE KEPT
    ON CALLING TO HER SHE FINALLY ASKED HIM WHAT IT WAS THAT HE WANTED
  sentences:
  - LODGED IN THE BRANCHES OF A PINYON TREE I THINK IT IS BUT HE DOESN'T ANSWER ME
  - HOW ASKED TAD
  - THE SECOND WAS AS IF HER FLESH AND BONES HAD ALL BEEN FASHIONED OUT OF EMERALD
    THE THIRD APPEARED AS SNOW BUT NEWLY FALLEN
- source_sentence: THERE ARE NATURES TOO TO WHOSE SENSE OF JUSTICE THE PRICE EXACTED
    LOOMS UP MONSTROUSLY ENORMOUS ODIOUS OPPRESSIVE WORRYING HUMILIATING EXTORTIONATE
    INTOLERABLE THOSE ARE THE FANATICS
  sentences:
  - I SHALL LOCK UP ALL THE DOORS AND WINDOWS IN THE HOUSE AND THEN I SHALL GIVE YOU
    MY LATCH KEY AND YOU CAN LET YOURSELF IN AND STAY THE NIGHT HERE THERE IS NO ONE
    IN THE HOUSE
  - HERE THE HOLY PRELATE OF FERNS MET HIM AND RELATED A VISION IN WHICH HE HAD BEEN
    INSTRUCTED TO DEMAND THE ABOLITION OF THE IMPOST
  - HE BEGAN TO WISH THAT HE HAD COMPROMISED IN SOME WAY OR OTHER THAT HE HAD SENT
    THE MONEY PERHAPS HE COULD DO IT UP HERE
datasets:
- openslr/librispeech_asr
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
  emissions: 114.78151570511905
  energy_consumed: 0.42889417052827883
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 2.094
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CLAP model trained on COCO Captions
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: librispeech eval
      type: librispeech-eval
    metrics:
    - type: cosine_accuracy@1
      value: 0.108
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.196
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.272
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.438
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.108
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.06533333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.054400000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0438
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.108
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.196
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.272
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.438
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.24322279069515917
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.18493690476190464
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.20597911270433167
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: librispeech test
      type: librispeech-test
    metrics:
    - type: cosine_accuracy@1
      value: 0.151
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.288
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.371
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.518
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.151
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.096
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.0742
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0518
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.151
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.288
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.371
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.518
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.31319206378414244
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.25047857142857116
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2693786295421681
      name: Cosine Map@100
---


# CLAP model trained on COCO Captions

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) on the [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr) dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) <!-- at revision 1d58d5192f5e4f16b57c574c7daf3d941404bd06 -->
- **Maximum Sequence Length:** None tokens
- **Output Dimensionality:** None dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'transformer_task': 'feature-extraction', 'modality_config': {'text': {'method': 'get_text_features', 'method_output_name': None}, 'audio': {'method': 'get_audio_features', 'method_output_name': None}}, 'module_output_name': 'sentence_embedding', 'architecture': 'ClapModel'})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("tomaarsen/clap-htsat-fused-librispeech")

# Run inference

sentences = [

    'THERE ARE NATURES TOO TO WHOSE SENSE OF JUSTICE THE PRICE EXACTED LOOMS UP MONSTROUSLY ENORMOUS ODIOUS OPPRESSIVE WORRYING HUMILIATING EXTORTIONATE INTOLERABLE THOSE ARE THE FANATICS',

    'HE BEGAN TO WISH THAT HE HAD COMPROMISED IN SOME WAY OR OTHER THAT HE HAD SENT THE MONEY PERHAPS HE COULD DO IT UP HERE',

    'HERE THE HOLY PRELATE OF FERNS MET HIM AND RELATED A VISION IN WHICH HE HAD BEEN INSTRUCTED TO DEMAND THE ABOLITION OF THE IMPOST',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 1024]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities)

# tensor([[ 1.0000, -0.4742, -0.2719],

#         [-0.4742,  1.0000,  0.8206],

#         [-0.2719,  0.8206,  1.0000]])

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `librispeech-eval` and `librispeech-test`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | librispeech-eval | librispeech-test |
|:--------------------|:-----------------|:-----------------|
| cosine_accuracy@1   | 0.108            | 0.151            |

| cosine_accuracy@3   | 0.196            | 0.288            |
| cosine_accuracy@5   | 0.272            | 0.371            |

| cosine_accuracy@10  | 0.438            | 0.518            |
| cosine_precision@1  | 0.108            | 0.151            |

| cosine_precision@3  | 0.0653           | 0.096            |
| cosine_precision@5  | 0.0544           | 0.0742           |

| cosine_precision@10 | 0.0438           | 0.0518           |
| cosine_recall@1     | 0.108            | 0.151            |

| cosine_recall@3     | 0.196            | 0.288            |
| cosine_recall@5     | 0.272            | 0.371            |

| cosine_recall@10    | 0.438            | 0.518            |
| **cosine_ndcg@10**  | **0.2432**       | **0.3132**       |

| cosine_mrr@10       | 0.1849           | 0.2505           |

| cosine_map@100      | 0.206            | 0.2694           |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### librispeech_asr



* Dataset: [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr) at [71cacbf](https://huggingface.co/datasets/openslr/librispeech_asr/tree/71cacbfb7e2354c4226d01e70d77d5fca3d04ba1)

* Size: 132,553 training samples

* Columns: <code>audio</code> and <code>text</code>

* Approximate statistics based on the first 1000 samples:

  |         | audio              | text                                                                                             |

  |:--------|:-------------------|:-------------------------------------------------------------------------------------------------|

  | type    | dict               | string                                                                                           |

  | details | <ul><li></li></ul> | <ul><li>min: 20 characters</li><li>mean: 189.15 characters</li><li>max: 294 characters</li></ul> |

* Samples:

  | audio                                                                                                                                                                                                        | text                                                                                                                                                                                                                                |

  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>{'path': '374-180298-0000.flac', 'array': array([ 6.92203816e-04,  8.04404495e-04,  8.03834875e-04, ...,<br>       -3.02505396e-05, -6.59527450e-06,  1.11444592e-06]), 'sampling_rate': 48000}</code> | <code>CHAPTER SIXTEEN I MIGHT HAVE TOLD YOU OF THE BEGINNING OF THIS LIAISON IN A FEW LINES BUT I WANTED YOU TO SEE EVERY STEP BY WHICH WE CAME I TO AGREE TO WHATEVER MARGUERITE WISHED</code>                                     |

  | <code>{'path': '374-180298-0001.flac', 'array': array([-9.33515839e-05, -1.25754057e-04, -1.44482241e-04, ...,<br>       -2.66165182e-04, -2.03228556e-04, -1.03404833e-04]), 'sampling_rate': 48000}</code> | <code>MARGUERITE TO BE UNABLE TO LIVE APART FROM ME IT WAS THE DAY AFTER THE EVENING WHEN SHE CAME TO SEE ME THAT I SENT HER MANON LESCAUT FROM THAT TIME SEEING THAT I COULD NOT CHANGE MY MISTRESS'S LIFE I CHANGED MY OWN</code> |

  | <code>{'path': '374-180298-0002.flac', 'array': array([-2.47883319e-04, -2.91854434e-04, -2.82971043e-04, ...,<br>       -1.43931946e-04, -1.17829914e-04, -6.32331648e-05]), 'sampling_rate': 48000}</code> | <code>I WISHED ABOVE ALL NOT TO LEAVE MYSELF TIME TO THINK OVER THE POSITION I HAD ACCEPTED FOR IN SPITE OF MYSELF IT WAS A GREAT DISTRESS TO ME THUS MY LIFE GENERALLY SO CALM</code>                                              |

* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim",

      "gather_across_devices": false

  }

  ```



### Evaluation Dataset



#### librispeech_asr



* Dataset: [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr) at [71cacbf](https://huggingface.co/datasets/openslr/librispeech_asr/tree/71cacbfb7e2354c4226d01e70d77d5fca3d04ba1)

* Size: 1,000 evaluation samples

* Columns: <code>audio</code> and <code>text</code>

* Approximate statistics based on the first 1000 samples:

  |         | audio              | text                                                                                            |

  |:--------|:-------------------|:------------------------------------------------------------------------------------------------|

  | type    | dict               | string                                                                                          |

  | details | <ul><li></li></ul> | <ul><li>min: 8 characters</li><li>mean: 104.62 characters</li><li>max: 516 characters</li></ul> |

* Samples:

  | audio                                                                                                                                                                                 | text                                                                                                                                         |

  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>{'path': '2277-149896-0000.flac', 'array': array([ 0.00179741,  0.00170625,  0.00120927, ..., -0.00144462,<br>       -0.00102732, -0.00048062]), 'sampling_rate': 48000}</code> | <code>HE WAS IN A FEVERED STATE OF MIND OWING TO THE BLIGHT HIS WIFE'S ACTION THREATENED TO CAST UPON HIS ENTIRE FUTURE</code>               |

  | <code>{'path': '2277-149896-0001.flac', 'array': array([ 0.00111104,  0.00081758,  0.00021103, ..., -0.00138193,<br>       -0.0009173 , -0.00041702]), 'sampling_rate': 48000}</code> | <code>HE WOULD HAVE TO PAY HER THE MONEY WHICH SHE WOULD NOW REGULARLY DEMAND OR THERE WOULD BE TROUBLE IT DID NOT MATTER WHAT HE DID</code> |

  | <code>{'path': '2277-149896-0002.flac', 'array': array([0.00080266, 0.00088462, 0.00083408, ..., 0.00105488, 0.00083673,<br>       0.00043296]), 'sampling_rate': 48000}</code>       | <code>HURSTWOOD WALKED THE FLOOR MENTALLY ARRANGING THE CHIEF POINTS OF HIS SITUATION</code>                                                 |

* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim",

      "gather_across_devices": false

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 16

- `per_device_eval_batch_size`: 16

- `learning_rate`: 2e-05

- `num_train_epochs`: 1

- `warmup_ratio`: 0.1

- `bf16`: True

- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 16

- `per_device_eval_batch_size`: 16

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `torch_empty_cache_steps`: None

- `learning_rate`: 2e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 1

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.1

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `use_cpu`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `bf16`: True

- `fp16`: False

- `half_precision_backend`: None

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: False

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `parallelism_config`: None

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch_fused

- `optim_args`: None

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `hub_revision`: None

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_for_metrics`: []

- `eval_do_concat_batches`: True

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: no

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `eval_on_start`: False

- `use_liger_kernel`: False

- `liger_kernel_config`: None

- `eval_use_gather_object`: False

- `average_tokens_across_devices`: True

- `prompts`: None

- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

- `router_mapping`: {}

- `learning_rate_mapping`: {}



</details>



### Training Logs

<details><summary>Click to expand</summary>



| Epoch  | Step | Training Loss | Validation Loss | librispeech-eval_cosine_ndcg@10 | librispeech-test_cosine_ndcg@10 |

|:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:-------------------------------:|

| -1     | -1   | -             | -               | 0.0114                          | -                               |

| 0.0100 | 83   | 3.5908        | -               | -                               | -                               |

| 0.0200 | 166  | 2.5371        | -               | -                               | -                               |

| 0.0301 | 249  | 2.1799        | -               | -                               | -                               |

| 0.0401 | 332  | 2.0415        | -               | -                               | -                               |

| 0.0501 | 415  | 1.9394        | -               | -                               | -                               |

| 0.0601 | 498  | 1.8167        | -               | -                               | -                               |

| 0.0701 | 581  | 1.7589        | -               | -                               | -                               |

| 0.0801 | 664  | 1.7262        | -               | -                               | -                               |

| 0.0902 | 747  | 1.7585        | -               | -                               | -                               |

| 0.1001 | 829  | -             | 1.5991          | 0.0335                          | -                               |

| 0.1002 | 830  | 1.7521        | -               | -                               | -                               |

| 0.1102 | 913  | 1.6822        | -               | -                               | -                               |

| 0.1202 | 996  | 1.6176        | -               | -                               | -                               |

| 0.1302 | 1079 | 1.6391        | -               | -                               | -                               |

| 0.1403 | 1162 | 1.6931        | -               | -                               | -                               |

| 0.1503 | 1245 | 1.4626        | -               | -                               | -                               |

| 0.1603 | 1328 | 1.4305        | -               | -                               | -                               |

| 0.1703 | 1411 | 1.4998        | -               | -                               | -                               |

| 0.1803 | 1494 | 1.4073        | -               | -                               | -                               |

| 0.1903 | 1577 | 1.3843        | -               | -                               | -                               |

| 0.2001 | 1658 | -             | 1.2227          | 0.0925                          | -                               |

| 0.2004 | 1660 | 1.3371        | -               | -                               | -                               |

| 0.2104 | 1743 | 1.3908        | -               | -                               | -                               |

| 0.2204 | 1826 | 1.2835        | -               | -                               | -                               |

| 0.2304 | 1909 | 1.3203        | -               | -                               | -                               |

| 0.2404 | 1992 | 1.2549        | -               | -                               | -                               |

| 0.2505 | 2075 | 1.2384        | -               | -                               | -                               |

| 0.2605 | 2158 | 1.2189        | -               | -                               | -                               |

| 0.2705 | 2241 | 1.1658        | -               | -                               | -                               |

| 0.2805 | 2324 | 1.1771        | -               | -                               | -                               |

| 0.2905 | 2407 | 1.2068        | -               | -                               | -                               |

| 0.3002 | 2487 | -             | 1.0471          | 0.1318                          | -                               |

| 0.3005 | 2490 | 1.1708        | -               | -                               | -                               |

| 0.3106 | 2573 | 1.1389        | -               | -                               | -                               |

| 0.3206 | 2656 | 1.0786        | -               | -                               | -                               |

| 0.3306 | 2739 | 1.0792        | -               | -                               | -                               |

| 0.3406 | 2822 | 1.0562        | -               | -                               | -                               |

| 0.3506 | 2905 | 0.98          | -               | -                               | -                               |

| 0.3607 | 2988 | 1.1153        | -               | -                               | -                               |

| 0.3707 | 3071 | 0.9987        | -               | -                               | -                               |

| 0.3807 | 3154 | 1.0002        | -               | -                               | -                               |

| 0.3907 | 3237 | 1.0017        | -               | -                               | -                               |

| 0.4002 | 3316 | -             | 0.8901          | 0.1589                          | -                               |

| 0.4007 | 3320 | 0.9364        | -               | -                               | -                               |

| 0.4107 | 3403 | 0.9394        | -               | -                               | -                               |

| 0.4208 | 3486 | 0.9459        | -               | -                               | -                               |

| 0.4308 | 3569 | 0.9604        | -               | -                               | -                               |

| 0.4408 | 3652 | 0.9491        | -               | -                               | -                               |

| 0.4508 | 3735 | 0.9295        | -               | -                               | -                               |

| 0.4608 | 3818 | 0.9508        | -               | -                               | -                               |

| 0.4709 | 3901 | 0.9122        | -               | -                               | -                               |

| 0.4809 | 3984 | 0.8483        | -               | -                               | -                               |

| 0.4909 | 4067 | 0.8443        | -               | -                               | -                               |

| 0.5003 | 4145 | -             | 0.7955          | 0.1908                          | -                               |

| 0.5009 | 4150 | 0.8838        | -               | -                               | -                               |

| 0.5109 | 4233 | 0.8367        | -               | -                               | -                               |

| 0.5209 | 4316 | 0.8516        | -               | -                               | -                               |

| 0.5310 | 4399 | 0.8112        | -               | -                               | -                               |

| 0.5410 | 4482 | 0.8368        | -               | -                               | -                               |

| 0.5510 | 4565 | 0.873         | -               | -                               | -                               |

| 0.5610 | 4648 | 0.8156        | -               | -                               | -                               |

| 0.5710 | 4731 | 0.8864        | -               | -                               | -                               |

| 0.5811 | 4814 | 0.8278        | -               | -                               | -                               |

| 0.5911 | 4897 | 0.8006        | -               | -                               | -                               |

| 0.6004 | 4974 | -             | 0.7649          | 0.1874                          | -                               |

| 0.6011 | 4980 | 0.8199        | -               | -                               | -                               |

| 0.6111 | 5063 | 0.7475        | -               | -                               | -                               |

| 0.6211 | 5146 | 0.7345        | -               | -                               | -                               |

| 0.6311 | 5229 | 0.7301        | -               | -                               | -                               |

| 0.6412 | 5312 | 0.774         | -               | -                               | -                               |

| 0.6512 | 5395 | 0.7391        | -               | -                               | -                               |

| 0.6612 | 5478 | 0.6929        | -               | -                               | -                               |

| 0.6712 | 5561 | 0.7218        | -               | -                               | -                               |

| 0.6812 | 5644 | 0.7071        | -               | -                               | -                               |

| 0.6912 | 5727 | 0.7024        | -               | -                               | -                               |

| 0.7004 | 5803 | -             | 0.6712          | 0.2419                          | -                               |

| 0.7013 | 5810 | 0.6428        | -               | -                               | -                               |

| 0.7113 | 5893 | 0.6719        | -               | -                               | -                               |

| 0.7213 | 5976 | 0.6972        | -               | -                               | -                               |

| 0.7313 | 6059 | 0.7043        | -               | -                               | -                               |

| 0.7413 | 6142 | 0.663         | -               | -                               | -                               |

| 0.7514 | 6225 | 0.6963        | -               | -                               | -                               |

| 0.7614 | 6308 | 0.6591        | -               | -                               | -                               |

| 0.7714 | 6391 | 0.6736        | -               | -                               | -                               |

| 0.7814 | 6474 | 0.7033        | -               | -                               | -                               |

| 0.7914 | 6557 | 0.6314        | -               | -                               | -                               |

| 0.8005 | 6632 | -             | 0.6806          | 0.2319                          | -                               |

| 0.8014 | 6640 | 0.6508        | -               | -                               | -                               |

| 0.8115 | 6723 | 0.6532        | -               | -                               | -                               |

| 0.8215 | 6806 | 0.6788        | -               | -                               | -                               |

| 0.8315 | 6889 | 0.6038        | -               | -                               | -                               |

| 0.8415 | 6972 | 0.658         | -               | -                               | -                               |

| 0.8515 | 7055 | 0.656         | -               | -                               | -                               |

| 0.8616 | 7138 | 0.6533        | -               | -                               | -                               |

| 0.8716 | 7221 | 0.601         | -               | -                               | -                               |

| 0.8816 | 7304 | 0.6243        | -               | -                               | -                               |

| 0.8916 | 7387 | 0.6315        | -               | -                               | -                               |

| 0.9005 | 7461 | -             | 0.6526          | 0.2432                          | -                               |

| 0.9016 | 7470 | 0.5707        | -               | -                               | -                               |

| 0.9116 | 7553 | 0.5778        | -               | -                               | -                               |

| 0.9217 | 7636 | 0.5736        | -               | -                               | -                               |

| 0.9317 | 7719 | 0.615         | -               | -                               | -                               |

| 0.9417 | 7802 | 0.5756        | -               | -                               | -                               |

| 0.9517 | 7885 | 0.5724        | -               | -                               | -                               |

| 0.9617 | 7968 | 0.5678        | -               | -                               | -                               |

| 0.9718 | 8051 | 0.5661        | -               | -                               | -                               |

| 0.9818 | 8134 | 0.6162        | -               | -                               | -                               |

| 0.9918 | 8217 | 0.5766        | -               | -                               | -                               |

| -1     | -1   | -             | -               | -                               | 0.3132                          |



</details>



### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.429 kWh

- **Carbon Emitted**: 0.115 kg of CO2

- **Hours Used**: 2.094 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 5.2.0.dev0

- Transformers: 4.57.0.dev0

- PyTorch: 2.8.0+cu128

- Accelerate: 1.6.0

- Datasets: 3.6.0

- Tokenizers: 0.22.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->