metadata
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:OnlineContrastiveLoss
base_model: sentence-transformers/stsb-distilbert-base
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
- average_precision
- f1
- precision
- recall
- threshold
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: Why did he go MIA?
sentences:
- Why did Yahoo kill Konfabulator?
- Why do people get angry with me?
- What are the best waterproof guns?
- source_sentence: Who is a soulmate?
sentences:
- Is she the “One”?
- Who is Pakistan's biggest enemy?
- Will smoking weed help with my anxiety?
- source_sentence: Is this poem good?
sentences:
- Is my poem any good?
- How can I become a good speaker?
- What is feminism?
- source_sentence: Who invented Yoga?
sentences:
- How was yoga invented?
- Who owns this number 3152150252?
- What is Dynamics CRM Services?
- source_sentence: Is stretching bad?
sentences:
- Is stretching good for you?
- If i=0; what will i=i++ do to i?
- What is the Output of this C program ?
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 15.707175691967695
energy_consumed: 0.040409299905757354
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.202
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: quora duplicates
type: quora-duplicates
metrics:
- type: cosine_accuracy
value: 0.86
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8104104995727539
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8250591016548463
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7247534394264221
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.7347368421052631
name: Cosine Precision
- type: cosine_recall
value: 0.9407008086253369
name: Cosine Recall
- type: cosine_ap
value: 0.887247904332921
name: Cosine Ap
- type: dot_accuracy
value: 0.828
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 157.35491943359375
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.7898550724637681
name: Dot F1
- type: dot_f1_threshold
value: 145.7113037109375
name: Dot F1 Threshold
- type: dot_precision
value: 0.7155361050328227
name: Dot Precision
- type: dot_recall
value: 0.8814016172506739
name: Dot Recall
- type: dot_ap
value: 0.8369433397850002
name: Dot Ap
- type: manhattan_accuracy
value: 0.868
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 208.00347900390625
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8307692307692308
name: Manhattan F1
- type: manhattan_f1_threshold
value: 208.00347900390625
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.7921760391198044
name: Manhattan Precision
- type: manhattan_recall
value: 0.8733153638814016
name: Manhattan Recall
- type: manhattan_ap
value: 0.8868217413983182
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.867
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 9.269388198852539
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8301404853128991
name: Euclidean F1
- type: euclidean_f1_threshold
value: 9.525729179382324
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.7888349514563107
name: Euclidean Precision
- type: euclidean_recall
value: 0.876010781671159
name: Euclidean Recall
- type: euclidean_ap
value: 0.8884154240019244
name: Euclidean Ap
- type: max_accuracy
value: 0.868
name: Max Accuracy
- type: max_accuracy_threshold
value: 208.00347900390625
name: Max Accuracy Threshold
- type: max_f1
value: 0.8307692307692308
name: Max F1
- type: max_f1_threshold
value: 208.00347900390625
name: Max F1 Threshold
- type: max_precision
value: 0.7921760391198044
name: Max Precision
- type: max_recall
value: 0.9407008086253369
name: Max Recall
- type: max_ap
value: 0.8884154240019244
name: Max Ap
- task:
type: paraphrase-mining
name: Paraphrase Mining
dataset:
name: quora duplicates dev
type: quora-duplicates-dev
metrics:
- type: average_precision
value: 0.534436244125929
name: Average Precision
- type: f1
value: 0.5447997274541295
name: F1
- type: precision
value: 0.5311002514589362
name: Precision
- type: recall
value: 0.5592246590398161
name: Recall
- type: threshold
value: 0.8626040816307068
name: Threshold
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.928
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9712
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9782
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9874
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.928
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4151333333333334
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.26656
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.14166
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7993523853760618
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9341884771405065
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9560896250710075
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9766088525134997
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9516150309696244
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9509392857142857
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9390263696194139
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.8926
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9518
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.9658
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9768
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.8926
name: Dot Precision@1
- type: dot_precision@3
value: 0.40273333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.26076
name: Dot Precision@5
- type: dot_precision@10
value: 0.13882
name: Dot Precision@10
- type: dot_recall@1
value: 0.7679620996617761
name: Dot Recall@1
- type: dot_recall@3
value: 0.9105756956997251
name: Dot Recall@3
- type: dot_recall@5
value: 0.9402185219519044
name: Dot Recall@5
- type: dot_recall@10
value: 0.9623418143294613
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9263520741106431
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9243020634920638
name: Dot Mrr@10
- type: dot_map@100
value: 0.9094019438194247
name: Dot Map@100
SentenceTransformer based on sentence-transformers/stsb-distilbert-base
This is a sentence-transformers model finetuned from sentence-transformers/stsb-distilbert-base on the sentence-transformers/quora-duplicates dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/stsb-distilbert-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/stsb-distilbert-base-ocl")
# Run inference
sentences = [
'Is stretching bad?',
'Is stretching good for you?',
'If i=0; what will i=i++ do to i?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
quora-duplicates - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.86 |
| cosine_accuracy_threshold | 0.8104 |
| cosine_f1 | 0.8251 |
| cosine_f1_threshold | 0.7248 |
| cosine_precision | 0.7347 |
| cosine_recall | 0.9407 |
| cosine_ap | 0.8872 |
| dot_accuracy | 0.828 |
| dot_accuracy_threshold | 157.3549 |
| dot_f1 | 0.7899 |
| dot_f1_threshold | 145.7113 |
| dot_precision | 0.7155 |
| dot_recall | 0.8814 |
| dot_ap | 0.8369 |
| manhattan_accuracy | 0.868 |
| manhattan_accuracy_threshold | 208.0035 |
| manhattan_f1 | 0.8308 |
| manhattan_f1_threshold | 208.0035 |
| manhattan_precision | 0.7922 |
| manhattan_recall | 0.8733 |
| manhattan_ap | 0.8868 |
| euclidean_accuracy | 0.867 |
| euclidean_accuracy_threshold | 9.2694 |
| euclidean_f1 | 0.8301 |
| euclidean_f1_threshold | 9.5257 |
| euclidean_precision | 0.7888 |
| euclidean_recall | 0.876 |
| euclidean_ap | 0.8884 |
| max_accuracy | 0.868 |
| max_accuracy_threshold | 208.0035 |
| max_f1 | 0.8308 |
| max_f1_threshold | 208.0035 |
| max_precision | 0.7922 |
| max_recall | 0.9407 |
| max_ap | 0.8884 |
Paraphrase Mining
- Dataset:
quora-duplicates-dev - Evaluated with
ParaphraseMiningEvaluator
| Metric | Value |
|---|---|
| average_precision | 0.5344 |
| f1 | 0.5448 |
| precision | 0.5311 |
| recall | 0.5592 |
| threshold | 0.8626 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.928 |
| cosine_accuracy@3 | 0.9712 |
| cosine_accuracy@5 | 0.9782 |
| cosine_accuracy@10 | 0.9874 |
| cosine_precision@1 | 0.928 |
| cosine_precision@3 | 0.4151 |
| cosine_precision@5 | 0.2666 |
| cosine_precision@10 | 0.1417 |
| cosine_recall@1 | 0.7994 |
| cosine_recall@3 | 0.9342 |
| cosine_recall@5 | 0.9561 |
| cosine_recall@10 | 0.9766 |
| cosine_ndcg@10 | 0.9516 |
| cosine_mrr@10 | 0.9509 |
| cosine_map@100 | 0.939 |
| dot_accuracy@1 | 0.8926 |
| dot_accuracy@3 | 0.9518 |
| dot_accuracy@5 | 0.9658 |
| dot_accuracy@10 | 0.9768 |
| dot_precision@1 | 0.8926 |
| dot_precision@3 | 0.4027 |
| dot_precision@5 | 0.2608 |
| dot_precision@10 | 0.1388 |
| dot_recall@1 | 0.768 |
| dot_recall@3 | 0.9106 |
| dot_recall@5 | 0.9402 |
| dot_recall@10 | 0.9623 |
| dot_ndcg@10 | 0.9264 |
| dot_mrr@10 | 0.9243 |
| dot_map@100 | 0.9094 |
Training Details
Training Dataset
sentence-transformers/quora-duplicates
- Dataset: sentence-transformers/quora-duplicates at 451a485
- Size: 100,000 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 15.5 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 15.46 tokens
- max: 78 tokens
- 0: ~64.10%
- 1: ~35.90%
- Samples:
sentence1 sentence2 label What are the best ecommerce blogs to do guest posts on about SEO to gain new clients?Interested in being a guest blogger for an ecommerce marketing blog?0How do I learn Informatica online training?What is Informatica online training?0What effects does marijuana use have on the flu?What effects does Marijuana use have on the common cold?0 - Loss:
OnlineContrastiveLoss
Evaluation Dataset
sentence-transformers/quora-duplicates
- Dataset: sentence-transformers/quora-duplicates at 451a485
- Size: 1,000 evaluation samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 15.82 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 15.91 tokens
- max: 72 tokens
- 0: ~62.90%
- 1: ~37.10%
- Samples:
sentence1 sentence2 label How should I prepare for JEE Mains 2017?How do I prepare for the JEE 2016?0What is the gate exam?What is the GATE exam in engineering?0Where do IRS officers get posted?Does IRS Officers get posted abroad?0 - Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64num_train_epochs: 1warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Falseper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Nonedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | cosine_map@100 | quora-duplicates-dev_average_precision | quora-duplicates_max_ap |
|---|---|---|---|---|---|---|
| 0 | 0 | - | - | 0.9235 | 0.4200 | 0.7276 |
| 0.0640 | 100 | 2.5123 | - | - | - | - |
| 0.1280 | 200 | 2.0534 | - | - | - | - |
| 0.1599 | 250 | - | 1.7914 | 0.9127 | 0.4082 | 0.8301 |
| 0.1919 | 300 | 1.9505 | - | - | - | - |
| 0.2559 | 400 | 1.9836 | - | - | - | - |
| 0.3199 | 500 | 1.8462 | 1.5923 | 0.9190 | 0.4445 | 0.8688 |
| 0.3839 | 600 | 1.7734 | - | - | - | - |
| 0.4479 | 700 | 1.7918 | - | - | - | - |
| 0.4798 | 750 | - | 1.5461 | 0.9291 | 0.4943 | 0.8707 |
| 0.5118 | 800 | 1.6157 | - | - | - | - |
| 0.5758 | 900 | 1.7244 | - | - | - | - |
| 0.6398 | 1000 | 1.7322 | 1.5294 | 0.9309 | 0.5048 | 0.8808 |
| 0.7038 | 1100 | 1.6825 | - | - | - | - |
| 0.7678 | 1200 | 1.6823 | - | - | - | - |
| 0.7997 | 1250 | - | 1.4812 | 0.9351 | 0.5126 | 0.8865 |
| 0.8317 | 1300 | 1.5707 | - | - | - | - |
| 0.8957 | 1400 | 1.6145 | - | - | - | - |
| 0.9597 | 1500 | 1.5795 | 1.4705 | 0.9390 | 0.5344 | 0.8884 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.040 kWh
- Carbon Emitted: 0.016 kg of CO2
- Hours Used: 0.202 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}