EmbeddingGemma-300m trained on the Medical Instruction and RetrIeval Dataset (MIRIAD)
This is a sentence-transformers model finetuned from google/embeddinggemma-300m on the text dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google/embeddinggemma-300m
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("ttwin/embeddinggemma-300m-onlineshop")
queries = [
"\u1001\u1031\u102b\u1000\u103a\u1006\u103d\u1032\u1011\u102f\u1010\u103a\u101b\u101e\u1031\u1038\u101c\u102c\u1038",
]
documents = [
'item',
'order',
'item',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
Evaluation
Metrics
Information Retrieval
| Metric |
onlineshop-eval |
onlineshop-test |
| cosine_accuracy@1 |
0.0 |
0.0244 |
| cosine_accuracy@3 |
0.025 |
0.0732 |
| cosine_accuracy@5 |
0.15 |
0.2439 |
| cosine_accuracy@10 |
0.275 |
0.3415 |
| cosine_precision@1 |
0.0 |
0.0244 |
| cosine_precision@3 |
0.0083 |
0.0244 |
| cosine_precision@5 |
0.03 |
0.0488 |
| cosine_precision@10 |
0.0275 |
0.0341 |
| cosine_recall@1 |
0.0 |
0.0244 |
| cosine_recall@3 |
0.025 |
0.0732 |
| cosine_recall@5 |
0.15 |
0.2439 |
| cosine_recall@10 |
0.275 |
0.3415 |
| cosine_ndcg@10 |
0.0997 |
0.152 |
| cosine_mrr@10 |
0.0486 |
0.0948 |
| cosine_map@100 |
0.0668 |
0.1077 |
Training Details
Training Dataset
text
- Dataset: text
- Size: 320 training samples
- Columns:
question and passage_text
- Approximate statistics based on the first 320 samples:
|
question |
passage_text |
| type |
string |
string |
| details |
- min: 3 tokens
- mean: 9.92 tokens
- max: 24 tokens
|
- min: 3 tokens
- mean: 3.03 tokens
- max: 9 tokens
|
- Samples:
| question |
passage_text |
ခုထဲက ၄၆ ပြပေးနော် |
item |
မနက်ဖြန်ပို့ပေးနော် |
delivery |
အမ crazy color က pink |
item |
- Loss:
CachedMultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 8,
"gather_across_devices": false
}
Evaluation Dataset
text
- Dataset: text
- Size: 40 evaluation samples
- Columns:
question and passage_text
- Approximate statistics based on the first 40 samples:
|
question |
passage_text |
| type |
string |
string |
| details |
- min: 3 tokens
- mean: 10.47 tokens
- max: 28 tokens
|
- min: 3 tokens
- mean: 3.0 tokens
- max: 3 tokens
|
- Samples:
| question |
passage_text |
အခုအရောင်ရှိလား |
item |
အပြင်မှာ လင်းတဲ့အရောင်ထည့်ပေးနော် |
order |
ခေါက်ဆွဲထုတ်ရသေးလား |
item |
- Loss:
CachedMultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 8,
"gather_across_devices": false
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
learning_rate: 2e-05
num_train_epochs: 1
warmup_ratio: 0.1
fp16: True
prompts: {'question': 'task: search result | query: ', 'passage_text': 'title: none | text: '}
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
parallelism_config: None
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: {'question': 'task: search result | query: ', 'passage_text': 'title: none | text: '}
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Training Loss |
onlineshop-eval_cosine_ndcg@10 |
onlineshop-test_cosine_ndcg@10 |
| -1 |
-1 |
- |
0.0164 |
- |
| 1.0 |
20 |
1.3977 |
- |
- |
| -1 |
-1 |
- |
0.0997 |
0.1520 |
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 5.1.0
- Transformers: 4.57.0.dev0
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.4.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}