IndoBERT-Lite Large Model (phase2 - uncased) Finetuned on IndoNLU SmSA dataset
Finetuned the IndoBERT-Lite Large Model (phase2 - uncased) model on the IndoNLU SmSA dataset following the procedues stated in the paper IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding.
How to use
from transformers import pipeline
classifier = pipeline("text-classification", 
                      model='tyqiangz/indobert-lite-large-p2-smsa', 
                      return_all_scores=True)
text = "Penyakit koronavirus 2019"
prediction = classifier(text)
prediction
"""
Output:
[[{'label': 'positive', 'score': 0.0006000096909701824},
  {'label': 'neutral', 'score': 0.01223431620746851},
  {'label': 'negative', 'score': 0.987165629863739}]]
"""
Finetuning hyperparameters:
- learning rate: 2e-5
 - batch size: 16
 - no. of epochs: 5
 - max sequence length: 512
 - random seed: 42
 
Classes:
- 0: positive
 - 1: neutral
 - 2: negative
 
Performance metrics on SmSA validation dataset
- Validation accuracy: 0.94
 - Validation F1: 0.91
 - Validation Recall: 0.91
 - Validation Precision: 0.93
 
- Downloads last month
 - 87