underdogquality's picture
Upload folder using huggingface_hub
4ac1e56 verified
|
raw
history blame
1.77 kB

🐞 IP102 Pest Detector β€” YOLO11 Small

A custom YOLO11 object detection model trained on the IP102 dataset β€” designed for pest detection in precision agriculture.

Model Purpose: Detect and classify 102 pest species in real-time field conditions using computer vision.


πŸ’‘ Model Details

  • Model: YOLO11 Small
  • Dataset: IP102 (Balanced, 14K+ images)
  • Image Sizes: Trained on 640x640 and 896x896
  • Classes: 102 pest species
  • Framework: Ultralytics YOLOv8
  • Hardware: NVIDIA A100 GPU
  • Epochs: 77
  • License: MIT License

πŸ§ͺ Performance

Metric Train Set Validation Set
Precision 0.912 0.744
Recall 0.923 0.789
[email protected] 0.941 0.815
[email protected]:0.95 0.838 0.605

πŸ“¦ Usage

from ultralytics import YOLO

# Load model
model = YOLO("path/to/best.pt")

# Run inference
results = model.predict("your_image.jpg", imgsz=640)

# Display results
results.show()
🐜 Class List
The model detects 102 agricultural pests, including:

rice leaf roller

paddy stem maggot

brown plant hopper

aphids

mole cricket

blister beetle
...and many more!

(See pests.yaml for the full class list.)

βš–οΈ License
This project is released under the MIT License β€” free for personal and commercial use.



πŸ“š Citation
If you use this model in research or production, please cite the IP102 dataset:

Wu, S., Zhan, C., et al.
"IP102: A Large-Scale Benchmark Dataset for Insect Pest Recognition."
CVPR, 2019.



πŸ’¬ Questions?
Open an issue or reach me on Hugging Face Discussions.