π― Namo Turn Detector v1 - Finnish
π Overview
The Namo Turn Detector is a specialized AI model designed to solve one of the most challenging problems in conversational AI: knowing when a user has finished speaking.
This Finnish-specialist model uses advanced natural language understanding to distinguish between:
- β Complete utterances (user is done speaking)
- π Incomplete utterances (user will continue speaking)
Built on DistilBERT architecture and optimized with quantized ONNX format, it delivers enterprise-grade performance with minimal latency.
π Key Features
- Turn Detection Specialist: Detects end-of-turn vs. continuation in Finnish speech transcripts.
- Low Latency: Optimized with quantized ONNX for <12ms inference.
- Robust Performance: 84.8% accuracy on diverse Finnish utterances.
- Easy Integration: Compatible with Python, ONNX Runtime, and VideoSDK Agents SDK.
- Enterprise Ready: Supports real-time conversational AI and voice assistants.
π Performance Metrics
| Metric | Score | 
|---|---|
| π― Accuracy | 84.75% | 
| π F1-Score | 86.27% | 
| πͺ Precision | 78.19% | 
| π Recall | 96.22% | 
| β‘ Latency | <12ms | 
| πΎ Model Size | ~135MB | 
 
π Evaluated on 1000+ Finnish utterances from diverse conversational contexts
β‘οΈ Speed Analysis
 
π§ Train & Test Scripts
π οΈ Installation
To use this model, you will need to install the following libraries.
pip install onnxruntime transformers huggingface_hub
π Quick Start
You can run inference directly from Hugging Face repository.
import numpy as np
import onnxruntime as ort
from transformers import AutoTokenizer
from huggingface_hub import hf_hub_download
class TurnDetector:
    def __init__(self, repo_id="videosdk-live/Namo-Turn-Detector-v1-Finnish"):
        """
        Initializes the detector by downloading the model and tokenizer
        from the Hugging Face Hub.
        """
        print(f"Loading model from repo: {repo_id}")
        
        # Download the model and tokenizer from the Hub
        # Authentication is handled automatically if you are logged in
        model_path = hf_hub_download(repo_id=repo_id, filename="model_quant.onnx")
        self.tokenizer = AutoTokenizer.from_pretrained(repo_id)
        
        # Set up the ONNX Runtime inference session
        self.session = ort.InferenceSession(model_path)
        self.max_length = 512
        print("β
 Model and tokenizer loaded successfully.")
    def predict(self, text: str) -> tuple:
        """
        Predicts if a given text utterance is the end of a turn.
        Returns (predicted_label, confidence) where:
        - predicted_label: 0 for "Not End of Turn", 1 for "End of Turn"
        - confidence: confidence score between 0 and 1
        """
        # Tokenize the input text
        inputs = self.tokenizer(
            text,
            truncation=True,
            max_length=self.max_length,
            return_tensors="np"
        )
        
        # Prepare the feed dictionary for the ONNX model
        feed_dict = {
            "input_ids": inputs["input_ids"],
            "attention_mask": inputs["attention_mask"]
        }
        
        # Run inference
        outputs = self.session.run(None, feed_dict)
        logits = outputs[0]
        probabilities = self._softmax(logits[0])
        predicted_label = np.argmax(probabilities)
        confidence = float(np.max(probabilities))
        return predicted_label, confidence
    def _softmax(self, x, axis=None):
        if axis is None:
            axis = -1
        exp_x = np.exp(x - np.max(x, axis=axis, keepdims=True))
        return exp_x / np.sum(exp_x, axis=axis, keepdims=True)
# --- Example Usage ---
if __name__ == "__main__":
    detector = TurnDetector()
    
    sentences = [
        "Amsterdam on vΓ€kiluvultaan alankomaiden suurin kaupunki.",      # Expected: End of Turn
        "Kun suolikaasua on normaalia enemmΓ€n, syynΓ€ on useimmiten", # Expected: Not End of Turn
    ]
    
    for sentence in sentences:
        predicted_label, confidence = detector.predict(sentence)
        result = "End of Turn" if predicted_label == 1 else "Not End of Turn"
        print(f"'{sentence}' -> {result} (confidence: {confidence:.3f})")
        print("-" * 50)
π€ VideoSDK Agents Integration
Integrate this turn detector directly with VideoSDK Agents for production-ready conversational AI applications.
from videosdk_agents import NamoTurnDetectorV1, pre_download_namo_turn_v1_model
#download model
pre_download_namo_turn_v1_model(language="fi")
# Initialize Finnish turn detector for VideoSDK Agents
turn_detector = NamoTurnDetectorV1(language="fi")
π Complete Integration Guide - Learn how to use
NamoTurnDetectorV1with VideoSDK Agents
π Citation
@model{namo_turn_detector_fi_2025,
  title={Namo Turn Detector v1: Finnish},
  author={VideoSDK Team},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/videosdk-live/Namo-Turn-Detector-v1-Finnish},
  note={ONNX-optimized DistilBERT for turn detection in Finnish}
}
π License
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
- Downloads last month
- 18
Model tree for videosdk-live/Namo-Turn-Detector-v1-Finnish
Evaluation results
- Accuracy on Namo Turn Detector v1 Test - Finnishself-reported0.848
- F1 Score on Namo Turn Detector v1 Test - Finnishself-reported0.863
- Precision on Namo Turn Detector v1 Test - Finnishself-reported0.782
- Recall on Namo Turn Detector v1 Test - Finnishself-reported0.962
