SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("vijay-delete/bge-chrono-botany")
# Run inference
sentences = [
'What intervention strategies can effectively mitigate Resonance Cascade phenomena in Chrono-flora cultivation?',
"This cascading effect resulted in localized spacetime distortions, necessitating immediate intervention via standard phase-leaf nullification protocols to restore stability. Notably, our results indicate a potential for utilizing Event Horizon Petals to mitigate these resonance mismatches by introducing a feedback loop that recalibrates the plant's spatial positioning prior to the onset of temporal fluctuations.",
'Quantum Photosynthesis serves as a vital stabilizing force during the eigen-frequency adjustments of Chrono-flora. By maintaining energy levels throughout the calibration process, QP mitigates potential fluctuations in the spacetime continuum, thereby enhancing the resilience of these engineered plants against temporal disruptions and supporting their overall stability in challenging environments.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
chrono_botany_eval - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.3404 |
| cosine_accuracy@3 | 0.5745 |
| cosine_accuracy@5 | 0.6809 |
| cosine_accuracy@10 | 0.766 |
| cosine_precision@1 | 0.3404 |
| cosine_precision@3 | 0.1915 |
| cosine_precision@5 | 0.1362 |
| cosine_precision@10 | 0.0766 |
| cosine_recall@1 | 0.3404 |
| cosine_recall@3 | 0.5745 |
| cosine_recall@5 | 0.6809 |
| cosine_recall@10 | 0.766 |
| cosine_ndcg@10 | 0.5498 |
| cosine_mrr@10 | 0.4804 |
| cosine_map@100 | 0.4886 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 186 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 186 samples:
sentence_0 sentence_1 type string string details - min: 13 tokens
- mean: 24.64 tokens
- max: 36 tokens
- min: 23 tokens
- mean: 56.74 tokens
- max: 116 tokens
- Samples:
sentence_0 sentence_1 How can eigen-frequencies be optimized to enhance Temporal Pollen use in Chrono-flora cultivation?By utilizing carefully calibrated eigen-frequencies of selected flowering species, we can establish controlled environments where Temporal Pollen can be harvested and utilized to accelerate or decelerate growth cycles.What methods exist using Eigen-frequency dissonance to reduce spacetime distortions?The innovative study of utilizing Eigen-frequency dissonance within Chrono-flora has unveiled potential methodologies for mitigating the risks associated with Resonance Cascades. Current applications often presume congruence between a plant's inherent resonant temporal frequency and the oscillatory patterns produced by Temporal Pollen application. However, through intentional mismatch crafting, we theorize that we can produce predetermined temporal fluctuations enabling localized disruptions within spacetime, thus diverting catastrophic distortions typically incurred during unanticipated fluctuations.How do Event Horizon Petals stabilize plant locations in Chrono-flora amidst spacetime distortions?Furthermore, the synthesis of Event Horizon Petals demonstrated potential in creating observational illusions that stabilize the perceived location of the plants, serving as a protective measure against catastrophic spacetime distortions. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 4multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | chrono_botany_eval_cosine_ndcg@10 |
|---|---|---|
| -1 | -1 | 0.3973 |
| 1.0 | 12 | 0.4946 |
| 2.0 | 24 | 0.5487 |
| 3.0 | 36 | 0.5484 |
| 4.0 | 48 | 0.5498 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
Model tree for vijay-delete/bge-chrono-botany
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on chrono botany evalself-reported0.340
- Cosine Accuracy@3 on chrono botany evalself-reported0.574
- Cosine Accuracy@5 on chrono botany evalself-reported0.681
- Cosine Accuracy@10 on chrono botany evalself-reported0.766
- Cosine Precision@1 on chrono botany evalself-reported0.340
- Cosine Precision@3 on chrono botany evalself-reported0.191
- Cosine Precision@5 on chrono botany evalself-reported0.136
- Cosine Precision@10 on chrono botany evalself-reported0.077
- Cosine Recall@1 on chrono botany evalself-reported0.340
- Cosine Recall@3 on chrono botany evalself-reported0.574