🧪 Gemma 4B — Distilled from Gemma 2
This repository contains a 4B-parameter distilled Gemma model, trained using knowledge distillation from a larger Gemma-2-9B-Instruct teacher.
The objective was to create a smaller, faster model that preserves strong instruction-following behavior while being practical for edge deployment and low-latency inference.
🔥 Overview
- Teacher Model:
google/gemma-2-9b-it - Student Model:
vishalkhot/gemma-4b-distilled - Goal: Achieve near-teacher quality in a ~4B parameter footprint
- Method: Logits-based distillation with temperature scaling, plus supervised tuning on curated instruction data
This model is ideal for:
- Chat-based assistants
- Reasoning over short/medium contexts
- On-device inference (4B fits easily on a single modern GPU)
- Serverless or low-cost API deployments
🧬 Distillation Process
Distillation was performed over a mixed instruction dataset, combining reasoning, multi-turn dialogue, tool-usage instructions, and diverse language tasks.
Training used a combination of:
- 🔹 KL divergence on teacher/student logits
- 🔹 Cross-entropy loss on reference outputs
- 🔹 Temperature scaling (T = 2–4)
Training Command Example
python distill.py \
--teacher-model google/gemma-3-12b-it \
--student-model google/gemma-3-4b-it\
--train-file data/train.jsonl \
--val-file data/val.jsonl \
--output-dir gemma_4b_distilled \
--batch-size 8 \
--gradient-accumulation-steps 2 \
--num-epochs 1 \
--learning-rate 1e-5 \
--warmup-steps 300 \
--max-length 2048 \
--temperature 2.5 \
--alpha 0.5 \
--save-steps 1000 \
--eval-steps 200 \
--logging-steps 10 \
--bf16
- Downloads last month
- 21