|
|
--- |
|
|
library_name: transformers |
|
|
pipeline_tag: text-generation |
|
|
inference: true |
|
|
widget: |
|
|
- text: Hello! |
|
|
example_title: Hello world |
|
|
group: Python |
|
|
base_model: |
|
|
- ibm-granite/granite-4.0-h-small |
|
|
--- |
|
|
|
|
|
This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [ibm-granite/granite-4.0-h-small](https://huggingface.co/ibm-granite/granite-4.0-h-small). |
|
|
|
|
|
### Example usage: |
|
|
|
|
|
```python |
|
|
import torch |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
|
|
model_id = "yujiepan/granite-moe-hybrid-tiny-random" |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_id, |
|
|
torch_dtype=torch.bfloat16, |
|
|
trust_remote_code=True, |
|
|
) |
|
|
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, trust_remote_code=True) |
|
|
print(pipe('Write an article about Artificial Intelligence.')) |
|
|
``` |
|
|
|
|
|
### Codes to create this repo: |
|
|
|
|
|
```python |
|
|
import json |
|
|
from pathlib import Path |
|
|
|
|
|
import accelerate |
|
|
import torch |
|
|
from huggingface_hub import file_exists, hf_hub_download |
|
|
from transformers import ( |
|
|
AutoConfig, |
|
|
AutoModelForCausalLM, |
|
|
AutoTokenizer, |
|
|
GenerationConfig, |
|
|
set_seed, |
|
|
) |
|
|
|
|
|
source_model_id = "ibm-granite/granite-4.0-h-small" |
|
|
save_folder = "/tmp/yujiepan/granite-moe-hybrid-tiny-random" |
|
|
|
|
|
processor = AutoTokenizer.from_pretrained(source_model_id) |
|
|
processor.save_pretrained(save_folder) |
|
|
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
|
config_json = json.load(f) |
|
|
|
|
|
config_json['hidden_size'] = 32 |
|
|
config_json['intermediate_size'] = 128 |
|
|
config_json['layer_types'] = ['mamba', 'attention'] |
|
|
config_json.update({ |
|
|
'mamba_expand': int(4096 / 32 * 2), |
|
|
}) |
|
|
config_json['num_attention_heads'] = 2 |
|
|
config_json['shared_intermediate_size'] = 128 |
|
|
config_json['num_hidden_layers'] = 2 |
|
|
config_json['num_key_value_heads'] = 2 |
|
|
config_json['tie_word_embeddings'] = True |
|
|
|
|
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
|
json.dump(config_json, f, indent=2) |
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
|
save_folder, |
|
|
trust_remote_code=True, |
|
|
) |
|
|
print(config) |
|
|
|
|
|
torch.set_default_dtype(torch.bfloat16) |
|
|
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) |
|
|
torch.set_default_dtype(torch.float32) |
|
|
|
|
|
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): |
|
|
model.generation_config = GenerationConfig.from_pretrained( |
|
|
source_model_id, trust_remote_code=True, |
|
|
) |
|
|
set_seed(42) |
|
|
model = model.cpu() |
|
|
with torch.no_grad(): |
|
|
for name, p in sorted(model.named_parameters()): |
|
|
torch.nn.init.normal_(p, 0, 0.1) |
|
|
print(name, p.shape) |
|
|
model.save_pretrained(save_folder) |
|
|
print(model) |
|
|
``` |
|
|
|
|
|
### Printing the model: |
|
|
|
|
|
```text |
|
|
GraniteMoeHybridForCausalLM( |
|
|
(model): GraniteMoeHybridModel( |
|
|
(embed_tokens): Embedding(100352, 32, padding_idx=100256) |
|
|
(layers): ModuleList( |
|
|
(0): GraniteMoeHybridDecoderLayer( |
|
|
(block_sparse_moe): GraniteMoeHybridMoE( |
|
|
(activation): SiLU() |
|
|
(input_linear): GraniteMoeHybridParallelExperts() |
|
|
(output_linear): GraniteMoeHybridParallelExperts() |
|
|
(router): GraniteMoeHybridTopKGating( |
|
|
(layer): Linear(in_features=32, out_features=72, bias=False) |
|
|
) |
|
|
) |
|
|
(input_layernorm): GraniteMoeHybridRMSNorm((32,), eps=1e-05) |
|
|
(post_attention_layernorm): GraniteMoeHybridRMSNorm((32,), eps=1e-05) |
|
|
(shared_mlp): GraniteMoeHybridMLP( |
|
|
(activation): SiLU() |
|
|
(input_linear): Linear(in_features=32, out_features=256, bias=False) |
|
|
(output_linear): Linear(in_features=128, out_features=32, bias=False) |
|
|
) |
|
|
(mamba): GraniteMoeHybridMambaLayer( |
|
|
(act): SiLU() |
|
|
(conv1d): Conv1d(8448, 8448, kernel_size=(4,), stride=(1,), padding=(3,), groups=8448) |
|
|
(in_proj): Linear(in_features=32, out_features=16768, bias=False) |
|
|
(norm): GraniteMoeHybridRMSNormGated() |
|
|
(out_proj): Linear(in_features=8192, out_features=32, bias=False) |
|
|
) |
|
|
) |
|
|
(1): GraniteMoeHybridDecoderLayer( |
|
|
(block_sparse_moe): GraniteMoeHybridMoE( |
|
|
(activation): SiLU() |
|
|
(input_linear): GraniteMoeHybridParallelExperts() |
|
|
(output_linear): GraniteMoeHybridParallelExperts() |
|
|
(router): GraniteMoeHybridTopKGating( |
|
|
(layer): Linear(in_features=32, out_features=72, bias=False) |
|
|
) |
|
|
) |
|
|
(input_layernorm): GraniteMoeHybridRMSNorm((32,), eps=1e-05) |
|
|
(post_attention_layernorm): GraniteMoeHybridRMSNorm((32,), eps=1e-05) |
|
|
(shared_mlp): GraniteMoeHybridMLP( |
|
|
(activation): SiLU() |
|
|
(input_linear): Linear(in_features=32, out_features=256, bias=False) |
|
|
(output_linear): Linear(in_features=128, out_features=32, bias=False) |
|
|
) |
|
|
(self_attn): GraniteMoeHybridAttention( |
|
|
(q_proj): Linear(in_features=32, out_features=32, bias=False) |
|
|
(k_proj): Linear(in_features=32, out_features=32, bias=False) |
|
|
(v_proj): Linear(in_features=32, out_features=32, bias=False) |
|
|
(o_proj): Linear(in_features=32, out_features=32, bias=False) |
|
|
) |
|
|
) |
|
|
) |
|
|
(norm): GraniteMoeHybridRMSNorm((32,), eps=1e-05) |
|
|
) |
|
|
(lm_head): Linear(in_features=32, out_features=100352, bias=False) |
|
|
) |
|
|
``` |