DeQA-Score-Mix3
DeQA-Score ( project page / codes / paper ) model weights fully fine-tuned on KonIQ, SPAQ, and KADID datasets.
This work is under our DepictQA project.
Quick Start with AutoModel
For this image,  start an AutoModel scorer with
 start an AutoModel scorer with transformers==4.36.1:
import requests
import torch
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
  "zhiyuanyou/DeQA-Score-Mix3",
  trust_remote_code=True,
  attn_implementation="eager", 
  torch_dtype=torch.float16,
  device_map="auto", 
)
from PIL import Image
# The inputs should be a list of multiple PIL images
score = model.score(
  [Image.open(requests.get(
    "https://raw.githubusercontent.com/zhiyuanyou/DeQA-Score/main/fig/singapore_flyer.jpg", stream=True
    ).raw)]
)
The "score" result should be 1.9404 (in range [1,5], higher is better).
Non-reference IQA Results (PLCC / SRCC)
| Dataset | KonIQ | SPAQ | KADID | PIPAL | LIVE-Wild | AGIQA | TID2013 | CSIQ | 
|---|---|---|---|---|---|---|---|---|
| Q-Align (Baseline) | 0.945 / 0.938 | 0.933 / 0.931 | 0.935 / 0.934 | 0.409 / 0.420 | 0.887 / 0.883 | 0.788 / 0.733 | 0.829 / 0.808 | 0.876 / 0.845 | 
| DeQA-Score (Ours) | 0.956 / 0.943 | 0.938 / 0.934 | 0.955 / 0.953 | 0.495 / 0.496 | 0.900 / 0.887 | 0.808 / 0.745 | 0.852 / 0.820 | 0.900 / 0.857 | 
If you find our work useful for your research and applications, please cite using the BibTeX:
@inproceedings{deqa_score,
  title={Teaching Large Language Models to Regress Accurate Image Quality Scores using Score Distribution},
  author={You, Zhiyuan and Cai, Xin and Gu, Jinjin and Xue, Tianfan and Dong, Chao},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2025},
}
- Downloads last month
- 2,453
Model tree for zhiyuanyou/DeQA-Score-Mix3
Base model
MAGAer13/mplug-owl2-llama2-7b