Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware
Paper
•
2304.13705
•
Published
•
6
⚠️ Note: This model underperforms ACT on this task. Published for comparison purposes.
A Diffusion Policy model trained on the ALOHA simulation Insertion task. This model is published as a baseline comparison to demonstrate that ACT outperforms Diffusion Policy on ALOHA bimanual tasks.
| Model | Steps | Success Rate | Task Difficulty |
|---|---|---|---|
| ACT | 200K | 15% | Hard |
| Diffusion Policy | 200K | 10% | Hard |
Conclusion: ACT is the recommended approach for ALOHA tasks.
| Property | Value |
|---|---|
| Architecture | Diffusion Policy |
| Parameters | ~100M |
| Task | ALOHA Insertion-v0 |
| Training Steps | 200,000 |
| Batch Size | 32 |
| Success Rate | 0-10% |
The Insertion task requires a bimanual robot to:
⚠️ This is a difficult task requiring precise bimanual coordination.
pip install lerobot gym-aloha
lerobot-train \
--policy.type=diffusion \
--dataset.repo_id=lerobot/aloha_sim_insertion_human_image \
--env.type=aloha \
--env.task=AlohaInsertion-v0 \
--batch_size=32 \
--steps=200000 \
--eval.n_episodes=10 \
--eval_freq=20000 \
--save_freq=20000 \
--output_dir=./outputs/dp_aloha_insertion \
--wandb.enable=false \
--policy.push_to_hub=false
lerobot-eval \
--policy.path=LeTau/diffusion_aloha_insertion \
--env.type=aloha \
--env.task=AlohaInsertion-v0 \
--eval.batch_size=1 \
--eval.n_episodes=20
| Evaluation | Episodes | Success Rate | Avg Sum Reward |
|---|---|---|---|
| Training (200K) | 10 | 10% | 25.0 |
| Independent | 20 | 0% | 17.4 |
Expected success rate: 0-10%
Sum Rewards: [0.0, 0.0, 37.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 311.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
Successes: 0/20 episodes
| Task | ACT | Diffusion Policy |
|---|---|---|
| TransferCube (Easy) | 42% | 10% |
| Insertion (Hard) | 15% | 0% |
ACT consistently outperforms Diffusion Policy on ALOHA bimanual tasks.
For ALOHA bimanual tasks, use ACT instead:
@article{zhao2023learning,
title={Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware},
author={Zhao, Tony Z and Kumar, Vikash and Levine, Sergey and Finn, Chelsea},
journal={arXiv preprint arXiv:2304.13705},
year={2023}
}
@article{chi2023diffusion,
title={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
author={Chi, Cheng and Feng, Siyuan and Du, Yilun and Xu, Zhenjia and Cousineau, Eric and Burchfiel, Benjamin and Song, Shuran},
journal={arXiv preprint arXiv:2303.04137},
year={2023}
}