contemmcm's picture
End of training
f231ad2 verified
metadata
library_name: transformers
license: apache-2.0
base_model: studio-ousia/luke-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - rouge
model-index:
  - name: 0f2142e9bd37e0ab1f2155dead0be1e5
    results: []

0f2142e9bd37e0ab1f2155dead0be1e5

This model is a fine-tuned version of studio-ousia/luke-base on the nyu-mll/glue [cola] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5325
  • Data Size: 1.0
  • Epoch Runtime: 25.4994
  • Accuracy: 0.8115
  • F1 Macro: 0.7662
  • Rouge1: 0.8115
  • Rouge2: 0.0
  • Rougel: 0.8115
  • Rougelsum: 0.8115

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.6979 0 1.4878 0.3125 0.2391 0.3115 0.0 0.3115 0.3125
No log 1 267 0.6298 0.0078 2.3376 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
No log 2 534 0.6256 0.0156 2.1027 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
No log 3 801 0.6220 0.0312 2.7075 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
No log 4 1068 0.6202 0.0625 3.5640 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
0.0369 5 1335 0.6259 0.125 5.1721 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
0.6135 6 1602 0.6199 0.25 8.1249 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
0.5898 7 1869 0.5910 0.5 14.1801 0.7168 0.5070 0.7178 0.0 0.7168 0.7178
0.4506 8.0 2136 0.4844 1.0 26.1606 0.7939 0.7166 0.7939 0.0 0.7939 0.7944
0.3043 9.0 2403 0.5989 1.0 25.3615 0.7852 0.6916 0.7852 0.0 0.7861 0.7852
0.2686 10.0 2670 0.6326 1.0 25.7104 0.8057 0.7419 0.8057 0.0 0.8057 0.8057
0.1852 11.0 2937 0.7550 1.0 25.6559 0.7891 0.7035 0.7891 0.0 0.7900 0.7891
0.2224 12.0 3204 0.5325 1.0 25.4994 0.8115 0.7662 0.8115 0.0 0.8115 0.8115

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1