contemmcm's picture
End of training
67d2f52 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - rouge
model-index:
  - name: 7f46eeb9fff60eed8b49f05e77ab5d1d
    results: []

7f46eeb9fff60eed8b49f05e77ab5d1d

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the nyu-mll/glue [mnli] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6347
  • Data Size: 1.0
  • Epoch Runtime: 616.6585
  • Accuracy: 0.7639
  • F1 Macro: 0.7624
  • Rouge1: 0.7638
  • Rouge2: 0.0
  • Rougel: 0.7639
  • Rougelsum: 0.7642

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 1.1021 0 4.8366 0.3333 0.2588 0.3333 0.0 0.3333 0.3332
1.056 1 12271 0.9014 0.0078 9.7280 0.5923 0.5927 0.5924 0.0 0.5925 0.5928
0.8885 2 24542 0.8165 0.0156 15.4293 0.6421 0.6365 0.6422 0.0 0.6425 0.6423
0.8231 3 36813 0.7632 0.0312 24.1737 0.6675 0.6626 0.6675 0.0 0.6675 0.6675
0.7834 4 49084 0.7125 0.0625 43.9368 0.6962 0.6953 0.6964 0.0 0.6962 0.6965
0.6754 5 61355 0.6893 0.125 82.9030 0.7145 0.7108 0.7144 0.0 0.7144 0.7148
0.6879 6 73626 0.6884 0.25 161.7223 0.7211 0.7215 0.7214 0.0 0.7212 0.7210
0.5822 7 85897 0.6155 0.5 318.7635 0.7488 0.7480 0.7486 0.0 0.7487 0.7489
0.575 8.0 98168 0.5989 1.0 631.4860 0.7701 0.7691 0.7699 0.0 0.7701 0.7701
0.4987 9.0 110439 0.6014 1.0 619.4724 0.7711 0.7704 0.7711 0.0 0.7712 0.7711
0.4853 10.0 122710 0.5948 1.0 612.5831 0.7719 0.7704 0.7720 0.0 0.7719 0.7720
0.4152 11.0 134981 0.6218 1.0 614.1248 0.7623 0.7630 0.7623 0.0 0.7624 0.7623
0.4063 12.0 147252 0.6741 1.0 614.9903 0.7557 0.7546 0.7555 0.0 0.7558 0.7559
0.4303 13.0 159523 0.7124 1.0 617.9320 0.7563 0.7572 0.7562 0.0 0.7566 0.7564
0.3838 14.0 171794 0.6347 1.0 616.6585 0.7639 0.7624 0.7638 0.0 0.7639 0.7642

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1