cs2764's picture
Upload MLX converted model with quantization settings
766c725 verified
metadata
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507/blob/main/LICENSE
pipeline_tag: text-generation
base_model: Qwen/Qwen3-30B-A3B-Instruct-2507
tags:
  - mlx

cs2764/Qwen3-30B-A3B-Instruct-2507-mlx-4Bit-gs32

The Model cs2764/Qwen3-30B-A3B-Instruct-2507-mlx-4Bit-gs32 was converted to MLX format from Qwen/Qwen3-30B-A3B-Instruct-2507 using mlx-lm version 0.26.2.

Quantization Details

This model was converted with the following quantization settings:

  • Quantization Strategy: 4-bit quantization
  • Group Size: 32
  • Average bits per weight: 5.000

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("cs2764/Qwen3-30B-A3B-Instruct-2507-mlx-4Bit-gs32")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)