indicxnli / README.md
SaylorTwift's picture
SaylorTwift HF Staff
Add 'te' config data files
81a1da6 verified
|
raw
history blame
13.1 kB
---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- as
- bn
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
license:
- cc0-1.0
multilinguality:
- multilingual
pretty_name: IndicXNLI
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- natural-language-inference
dataset_info:
- config_name: as
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 172049648
num_examples: 392702
- name: test
num_bytes: 2097452
num_examples: 5010
- name: validation
num_bytes: 1042526
num_examples: 2490
download_size: 74371257
dataset_size: 175189626
- config_name: bn
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 174095464
num_examples: 392702
- name: test
num_bytes: 2113149
num_examples: 5010
- name: validation
num_bytes: 1044438
num_examples: 2490
download_size: 74466392
dataset_size: 177253051
- config_name: gu
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 167102046
num_examples: 392702
- name: test
num_bytes: 2016682
num_examples: 5010
- name: validation
num_bytes: 992611
num_examples: 2490
download_size: 73329179
dataset_size: 170111339
- config_name: hi
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 175582034
num_examples: 392702
- name: test
num_bytes: 2109705
num_examples: 5010
- name: validation
num_bytes: 1043487
num_examples: 2490
download_size: 74840429
dataset_size: 178735226
- config_name: kn
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 188780510
num_examples: 392702
- name: test
num_bytes: 2309807
num_examples: 5010
- name: validation
num_bytes: 1139277
num_examples: 2490
download_size: 78285369
dataset_size: 192229594
- config_name: ml
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 187851515
num_examples: 392702
- name: test
num_bytes: 2362836
num_examples: 5010
- name: validation
num_bytes: 1171953
num_examples: 2490
download_size: 77263292
dataset_size: 191386304
- config_name: mr
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 170752688
num_examples: 392702
- name: test
num_bytes: 2078079
num_examples: 5010
- name: validation
num_bytes: 1028494
num_examples: 2490
download_size: 73035248
dataset_size: 173859261
- config_name: or
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 173273552
num_examples: 392702
- name: test
num_bytes: 2135557
num_examples: 5010
- name: validation
num_bytes: 1047017
num_examples: 2490
download_size: 73223669
dataset_size: 176456126
- config_name: pa
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 172665273
num_examples: 392702
- name: test
num_bytes: 2077462
num_examples: 5010
- name: validation
num_bytes: 1030309
num_examples: 2490
download_size: 73760675
dataset_size: 175773044
- config_name: ta
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 206105782
num_examples: 392702
- name: test
num_bytes: 2520985
num_examples: 5010
- name: validation
num_bytes: 1637644
num_examples: 3238
download_size: 79964341
dataset_size: 210264411
- config_name: te
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 175597688
num_examples: 392702
- name: test
num_bytes: 2145349
num_examples: 5010
- name: validation
num_bytes: 1056174
num_examples: 2490
download_size: 75184880
dataset_size: 178799211
configs:
- config_name: as
data_files:
- split: train
path: as/train-*
- split: test
path: as/test-*
- split: validation
path: as/validation-*
- config_name: bn
data_files:
- split: train
path: bn/train-*
- split: test
path: bn/test-*
- split: validation
path: bn/validation-*
- config_name: gu
data_files:
- split: train
path: gu/train-*
- split: test
path: gu/test-*
- split: validation
path: gu/validation-*
- config_name: hi
data_files:
- split: train
path: hi/train-*
- split: test
path: hi/test-*
- split: validation
path: hi/validation-*
- config_name: kn
data_files:
- split: train
path: kn/train-*
- split: test
path: kn/test-*
- split: validation
path: kn/validation-*
- config_name: ml
data_files:
- split: train
path: ml/train-*
- split: test
path: ml/test-*
- split: validation
path: ml/validation-*
- config_name: mr
data_files:
- split: train
path: mr/train-*
- split: test
path: mr/test-*
- split: validation
path: mr/validation-*
- config_name: or
data_files:
- split: train
path: or/train-*
- split: test
path: or/test-*
- split: validation
path: or/validation-*
- config_name: pa
data_files:
- split: train
path: pa/train-*
- split: test
path: pa/test-*
- split: validation
path: pa/validation-*
- config_name: ta
data_files:
- split: train
path: ta/train-*
- split: test
path: ta/test-*
- split: validation
path: ta/validation-*
- config_name: te
data_files:
- split: train
path: te/train-*
- split: test
path: te/test-*
- split: validation
path: te/validation-*
---
# Dataset Card for "IndicXNLI"
## Table of Contents
- [Dataset Card for "IndicXNLI"](#dataset-card-for-indicxnli)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
## Dataset Description
- **Homepage:** <https://github.com/divyanshuaggarwal/IndicXNLI>
- **Paper:** [IndicXNLI: Evaluating Multilingual Inference for Indian Languages](https://arxiv.org/abs/2204.08776)
- **Point of Contact:** [Divyanshu Aggarwal](mailto:[email protected])
### Dataset Summary
INDICXNLI is similar to existing
XNLI dataset in shape/form, but focusses on Indic language family. INDICXNLI include NLI
data for eleven major Indic languages that includes
Assamese (‘as’), Gujarat (‘gu’), Kannada (‘kn’),
Malayalam (‘ml’), Marathi (‘mr’), Odia (‘or’),
Punjabi (‘pa’), Tamil (‘ta’), Telugu (‘te’), Hindi
(‘hi’), and Bengali (‘bn’).
### Supported Tasks and Leaderboards
**Tasks:** Natural Language Inference
**Leaderboards:** Currently there is no Leaderboard for this dataset.
### Languages
- `Assamese (as)`
- `Bengali (bn)`
- `Gujarati (gu)`
- `Kannada (kn)`
- `Hindi (hi)`
- `Malayalam (ml)`
- `Marathi (mr)`
- `Oriya (or)`
- `Punjabi (pa)`
- `Tamil (ta)`
- `Telugu (te)`
## Dataset Structure
### Data Instances
One example from the `hi` dataset is given below in JSON format.
```python
{'premise': 'अवधारणात्मक रूप से क्रीम स्किमिंग के दो बुनियादी आयाम हैं-उत्पाद और भूगोल।',
'hypothesis': 'उत्पाद और भूगोल क्रीम स्किमिंग का काम करते हैं।',
'label': 1 (neutral) }
```
### Data Fields
- `premise (string)`: Premise Sentence
- `hypothesis (string)`: Hypothesis Sentence
- `label (integer)`: Integer label `0` if hypothesis `entails` the premise, `2` if hypothesis `negates` the premise and `1` otherwise.
### Data Splits
<!-- Below is the dataset split given for `hi` dataset.
```python
DatasetDict({
train: Dataset({
features: ['premise', 'hypothesis', 'label'],
num_rows: 392702
})
test: Dataset({
features: ['premise', 'hypothesis', 'label'],
num_rows: 5010
})
validation: Dataset({
features: ['premise', 'hypothesis', 'label'],
num_rows: 2490
})
})
``` -->
Language | ISO 639-1 Code |Train | Test | Dev |
--------------|----------------|-------|-----|------|
Assamese | as | 392,702 | 5,010 | 2,490 |
Bengali | bn | 392,702 | 5,010 | 2,490 |
Gujarati | gu | 392,702 | 5,010 | 2,490 |
Hindi | hi | 392,702 | 5,010 | 2,490 |
Kannada | kn | 392,702 | 5,010 | 2,490 |
Malayalam | ml |392,702 | 5,010 | 2,490 |
Marathi | mr |392,702 | 5,010 | 2,490 |
Oriya | or | 392,702 | 5,010 | 2,490 |
Punjabi | pa | 392,702 | 5,010 | 2,490 |
Tamil | ta | 392,702 | 5,010 | 2,490 |
Telugu | te | 392,702 | 5,010 | 2,490 |
<!-- The dataset split remains same across all languages. -->
## Dataset usage
Code snippet for using the dataset using datasets library.
```python
from datasets import load_dataset
dataset = load_dataset("Divyanshu/indicxnli")
```
## Dataset Creation
Machine translation of XNLI english dataset to 11 listed Indic Languages.
### Curation Rationale
[More information needed]
### Source Data
[XNLI dataset](https://cims.nyu.edu/~sbowman/xnli/)
#### Initial Data Collection and Normalization
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
#### Who are the source language producers?
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
#### Human Verification Process
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
## Considerations for Using the Data
### Social Impact of Dataset
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
### Discussion of Biases
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
### Other Known Limitations
[Detailed in the paper](https://arxiv.org/abs/2204.08776)
### Dataset Curators
Divyanshu Aggarwal, Vivek Gupta, Anoop Kunchukuttan
### Licensing Information
Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/). Copyright of the dataset contents belongs to the original copyright holders.
### Citation Information
If you use any of the datasets, models or code modules, please cite the following paper:
```
@misc{https://doi.org/10.48550/arxiv.2204.08776,
doi = {10.48550/ARXIV.2204.08776},
url = {https://arxiv.org/abs/2204.08776},
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!-- ### Contributions -->