|
|
--- |
|
|
license: cc-by-nc-4.0 |
|
|
task_categories: |
|
|
- object-detection |
|
|
pretty_name: WildBe-v2 |
|
|
size_categories: |
|
|
- 1K<n<10K |
|
|
tags: |
|
|
- drone imagery |
|
|
- agriculture |
|
|
- in the wild |
|
|
dataset_info: |
|
|
features: |
|
|
- name: index |
|
|
dtype: int64 |
|
|
- name: image |
|
|
dtype: image |
|
|
- name: w |
|
|
dtype: int64 |
|
|
- name: h |
|
|
dtype: int64 |
|
|
- name: split |
|
|
dtype: string |
|
|
- name: provenance |
|
|
dtype: string |
|
|
- name: source_image_id |
|
|
dtype: string |
|
|
- name: labels |
|
|
dtype: string |
|
|
--- |
|
|
# WildBe-v2: Expanded Drone Imagery of Wild Berries in Finnish Forests |
|
|
|
|
|
<div style="border: 1px solid #d1d5db; border-radius: 0.75rem; padding: 1rem; margin: 0.5rem auto; font-family: sans-serif; color: #111827; width: 100%; box-sizing: border-box;"> |
|
|
<div style="margin-bottom: 0.5rem; text-align: left;"> |
|
|
<p style="font-size: 1rem; font-weight: 600; color: #1f2937; margin-bottom: 1rem;">Example Images</p> |
|
|
<div style="overflow-x: auto; white-space: nowrap; background-color: #f3f4f6; border-radius: 0.5rem; padding: 1rem;"> |
|
|
<img src="https://huggingface.co/datasets/FBK-TeV/WildBe-v2/resolve/main/resources/01.png" alt="WildBe-v2 Example 1" style="height: 180px; width: auto; display: inline-block; border-radius: 0.5rem; margin-right: 1rem;"> |
|
|
<img src="https://huggingface.co/datasets/FBK-TeV/WildBe-v2/resolve/main/resources/02.png" alt="WildBe-v2 Example 2" style="height: 180px; width: auto; display: inline-block; border-radius: 0.5rem; margin-right: 1rem;"> |
|
|
<img src="https://huggingface.co/datasets/FBK-TeV/WildBe-v2/resolve/main/resources/03.png" alt="WildBe-v2 Example 3" style="height: 180px; width: auto; display: inline-block; border-radius: 0.5rem; margin-right: 1rem;"> |
|
|
<img src="https://huggingface.co/datasets/FBK-TeV/WildBe-v2/resolve/main/resources/04.png" alt="WildBe-v2 Example 4" style="height: 180px; width: auto; display: inline-block; border-radius: 0.5rem;"> |
|
|
</div> |
|
|
</div> |
|
|
</div> |
|
|
|
|
|
## Dataset Description |
|
|
- Homepage: https://ferox.fbk.eu/ |
|
|
|
|
|
## Introduction |
|
|
We present WildBe-v2, the evolution and expansion of the original [WildBe](https://huggingface.co/datasets/FBK-TeV/WildBe) dataset, the first drone-captured collection of wild berries from Finnish peatlands and forest canopies. WildBe-v2 introduces 11 classes, including five berry types (bilberries, cloudberries, crowberries, lingonberries, and bog bilberries) annotated in ripe and unripe states, plus the mushroom class. The dataset now comprises 21K images and over 61K annotations collected from seven distinct locations. This broader coverage enhances variability in lighting, vegetation, and background complexity, offering a richer benchmark for research on object detection and visual understanding in the wild. |
|
|
|
|
|
## Dataset Classes |
|
|
The dataset contains 11 classes, mapped to the integer IDs in the labels: |
|
|
``` |
|
|
0 → bilberry |
|
|
1 → bilberry-unripe |
|
|
2 → cloudberry |
|
|
3 → cloudberry-unripe |
|
|
4 → crowberry |
|
|
5 → crowberry-unripe |
|
|
6 → lingonberry |
|
|
7 → lingonberry-unripe |
|
|
8 → bog-bilberry |
|
|
9 → bog-bilberry-unripe |
|
|
10 → mushroom |
|
|
``` |
|
|
## How to use: an example of visualization |
|
|
```python |
|
|
import json |
|
|
|
|
|
from datasets import load_dataset |
|
|
from PIL import ImageDraw |
|
|
|
|
|
# Color map for classes |
|
|
classes_color_map = { |
|
|
0: (4, 200, 86), # dark-pastel-green |
|
|
1: (14, 251, 113), # spring-green |
|
|
2: (204, 153, 0), # goldenrod |
|
|
3: (255, 199, 31), # mikado-yellow |
|
|
4: (0, 143, 204), # blue-ncs |
|
|
5: (31, 188, 255), # deep-sky-blue |
|
|
6: (184, 0, 95), # amaranth-purple |
|
|
7: (255, 10, 137), # magenta |
|
|
8: (255, 181, 112), # sandy-brown |
|
|
9: (255, 202, 153), # peach |
|
|
10: (165, 82, 42), # rustbrown |
|
|
} |
|
|
|
|
|
# Load the dataset |
|
|
dataset = load_dataset("FBK-TeV/WildBe-v2", split="validation") |
|
|
dataset = dataset.shuffle(seed=42) |
|
|
|
|
|
sample_idx = 30 |
|
|
image = dataset[sample_idx]["image"] |
|
|
labels = json.loads(dataset[sample_idx]["labels"]) |
|
|
|
|
|
draw = ImageDraw.Draw(image) |
|
|
|
|
|
for label in labels: |
|
|
center_x = label["x"] * dataset[sample_idx]["w"] |
|
|
center_y = label["y"] * dataset[sample_idx]["h"] |
|
|
width = label["width"] * dataset[sample_idx]["w"] |
|
|
height = label["height"] * dataset[sample_idx]["h"] |
|
|
draw.rectangle( |
|
|
[ |
|
|
(center_x - width / 2, center_y - height / 2), |
|
|
(center_x + width / 2, center_y + height / 2), |
|
|
], |
|
|
outline=classes_color_map[label["class"]], |
|
|
width=2, |
|
|
) |
|
|
|
|
|
image.show() |
|
|
``` |
|
|
 |
|
|
|
|
|
## Data Fields |
|
|
``` |
|
|
index: An integer representing the unique identifier for each example. |
|
|
image: A PIL image. |
|
|
w: image width |
|
|
h: image height |
|
|
split: A string indicating the data split, e.g., 'train', 'validation', or 'test'. |
|
|
provenance: A string ("A", "B", ...) indicating the area in which the image has been collected |
|
|
source_image_id: A string representing the unique identifier for the source image from which the image was cropped. |
|
|
labels: A list of dictionaries, each containing: |
|
|
class: An integer representing the class identifier. |
|
|
label: A string representing the class name. |
|
|
x: A float representing the normalized x-coordinate of the center of the bounding box. |
|
|
y: A float representing the normalized y-coordinate of the center of the bounding box. |
|
|
width: A float representing the normalized width of the bounding box. |
|
|
height: A float representing the normalized height of the bounding box. |
|
|
``` |
|
|
|
|
|
|
|
|
## Acknowledgement |
|
|
<style> |
|
|
.list_view{ |
|
|
display:flex; |
|
|
align-items:center; |
|
|
} |
|
|
.list_view p{ |
|
|
padding:10px; |
|
|
} |
|
|
</style> |
|
|
|
|
|
<div class="list_view"> |
|
|
<a href="https://ferox.fbk.eu/" target="_blank"> |
|
|
<img src="resources/FEROX_logo.png" alt="FEROX logo" style="max-width:200px"> |
|
|
</a> |
|
|
<p> |
|
|
The FEROX project has received funding from the European Union’s Horizon Framework Programme for Research and Innovation under the Grant Agreement no 101070440 - call HORIZON-CL4-2021-DIGITAL-EMERGING-01-10: AI, Data and Robotics at work (IA). |
|
|
</p> |
|
|
</div> |
|
|
|
|
|
## If you use WildBe-v2 |
|
|
If you use WildBe-v2 in your work, please consider citing our previous paper: |
|
|
|
|
|
### APA Citation |
|
|
Riz, L., Povoli, S., Caraffa, A., Boscaini, D., Mekhalfi, M. L., Chippendale, P., Turtiainen, M., Partanen, B., Ballester, L. S., Noguera, F. B., & Poiesi, F. (2025). Wild Berry Image Dataset Collected in Finnish Forests and Peatlands Using Drones. In Computer Vision – ECCV 2024 Workshops. Springer Nature Switzerland. |
|
|
|
|
|
### Bibtex |
|
|
``` |
|
|
@InProceedings{riz2024wild, |
|
|
title={Wild Berry Image Dataset Collected in Finnish Forests and Peatlands Using Drones}, |
|
|
author={Riz, Luigi and Povoli, Sergio and Caraffa, Andrea and Boscaini, Davide and Mekhalfi, Mohamed Lamine and Chippendale, Paul and Turtiainen, Marjut and Partanen, Birgitta and Ballester, Laura Smith and Noguera, Francisco Blanes and others}, |
|
|
booktitle="Computer Vision -- ECCV 2024 Workshops", |
|
|
year="2025", |
|
|
publisher="Springer Nature Switzerland", |
|
|
} |
|
|
``` |
|
|
|
|
|
|
|
|
## Partners |
|
|
<style> |
|
|
table { |
|
|
width: 100%; |
|
|
table-layout: fixed; |
|
|
border-collapse: collapse; |
|
|
} |
|
|
th, td { |
|
|
text-align: center; |
|
|
padding: 10px; |
|
|
vertical-align: middle; |
|
|
} |
|
|
</style> |
|
|
|
|
|
<table> |
|
|
<tbody> |
|
|
<tr> |
|
|
<td><a href="https://www.fbk.eu/en" target="_blank"><img src="resources/FBK_logo.jpg" alt="FBK"></a></td> |
|
|
<td><a href="https://www.tuni.fi/en" target="_blank"><img src="resources/Tampere_University_logo.png" alt="TAU"></a></td> |
|
|
<td><a href="https://www.upv.es/index-en.html" target="_blank"><img src="resources/UPV_logo.jpeg" alt="UPV"></a></td> |
|
|
<td><a href="https://ingeniarius.pt/" target="_blank"><img src="resources/ingeniarius_logo.png" alt="ING"></a></td> |
|
|
<td><a href="https://www.maanmittauslaitos.fi/en/research" target="_blank"><img src="resources/FGI_logo.png" alt="FGI"></a></td> |
|
|
<td><a href="https://www.cranfield.ac.uk/" target="_blank"><img src="resources/cranfield_logo.png" alt="CU"></a></td> |
|
|
<td><a href="https://deepforestry.com/" target="_blank"><img src="resources/df_logo.png" alt="DF"></a></td> |
|
|
<td><a href="https://gemmo.ai/" target="_blank"><img src="resources/gemmoai_logo.jpeg" alt="GEM"></a></td> |
|
|
<td><a href="https://www.arktisetaromit.fi/" target="_blank"><img src="resources/afa_logo.png" alt="AFA"></a></td> |
|
|
</tr> |
|
|
</tbody> |
|
|
</table> |
|
|
|