MohamedAzizBhouri's picture
Upload 284 files
d173fd4
raw
history blame
4.42 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 19 23:40:45 2023
@author: mohamedazizbhouri
"""
import numpy as np
is_input = 0 # 0 or 1
case_var = 'moist' # 'moist' or 'heat' if is_input == 0
sim = 'CAM' # 'CAM' or 'SPCAM'
if sim == 'CAM':
if is_input == 1:
X = np.load('data_CAM5_8K/all_inputs.npy')
X = np.array(X,dtype=np.float64)
mu_X_CAM5, sigma_X_CAM5 = [], []
# we do not use the vectorial format of computing mean and std on purpose
# in order to avoid the risk of precision error given the dataset size
for i in range(X.shape[1]):
mu_X_CAM5.append(np.mean(X[:,i]))
sigma_X_CAM5.append(np.std(X[:,i]))
mu_X_CAM5 = np.array(np.array(mu_X_CAM5),dtype=np.float32)
sigma_X_CAM5 = np.array(np.array(sigma_X_CAM5),dtype=np.float32)
np.save('norm/mu_X_CAM5.npy',mu_X_CAM5)
np.save('norm/sigma_X_CAM5.npy',sigma_X_CAM5)
else:
if case_var == 'moist':
X = np.load('data_CAM5_8K/all_outputs_moist.npy')
X = np.array(X,dtype=np.float64)
mu_y_moist_CAM5, sigma_y_moist_CAM5 = [], []
for i in range(X.shape[1]):
mu_y_moist_CAM5.append(np.mean(X[:,i]))
sigma_y_moist_CAM5.append(np.std(X[:,i]))
mu_y_moist_CAM5 = np.array(np.array(mu_y_moist_CAM5),dtype=np.float32)
sigma_y_moist_CAM5 = np.array(np.array(sigma_y_moist_CAM5),dtype=np.float32)
np.save('norm/mu_y_moist_CAM5.npy',mu_y_moist_CAM5)
np.save('norm/sigma_y_moist_CAM5.npy',sigma_y_moist_CAM5)
else:
X = np.load('data_CAM5_8K/all_outputs_heat.npy')
X = np.array(X,dtype=np.float64)
mu_y_heat_CAM5, sigma_y_heat_CAM5 = [], []
for i in range(X.shape[1]):
mu_y_heat_CAM5.append(np.mean(X[:,i]))
sigma_y_heat_CAM5.append(np.std(X[:,i]))
mu_y_heat_CAM5 = np.array(np.array(mu_y_heat_CAM5),dtype=np.float32)
sigma_y_heat_CAM5 = np.array(np.array(sigma_y_heat_CAM5),dtype=np.float32)
np.save('norm/mu_y_heat_CAM5.npy',mu_y_heat_CAM5)
np.save('norm/sigma_y_heat_CAM5.npy',sigma_y_heat_CAM5)
elif sim == 'SPCAM':
if is_input == 1:
X = np.load('data_SPCAM5_hist/three_month_inputs.npy')
X = np.array(X,dtype=np.float64)
mu_X_SPCAM5, sigma_X_SPCAM5 = [], []
# we do not use the vectorial format of computing mean and std on purpose
# in order to avoid the risk of precision error given the dataset size
for i in range(X.shape[1]):
mu_X_SPCAM5.append(np.mean(X[:,i]))
sigma_X_SPCAM5.append(np.std(X[:,i]))
mu_X_SPCAM5 = np.array(np.array(mu_X_SPCAM5),dtype=np.float32)
sigma_X_SPCAM5 = np.array(np.array(sigma_X_SPCAM5),dtype=np.float32)
np.save('norm/mu_X_SPCAM5.npy',mu_X_SPCAM5)
np.save('norm/sigma_X_SPCAM5.npy',sigma_X_SPCAM5)
else:
if case_var == 'moist':
X = np.load('data_SPCAM5_hist/three_month_outputs_moist.npy')
X = np.array(X,dtype=np.float64)
mu_y_moist_SPCAM5, sigma_y_moist_SPCAM5 = [], []
for i in range(X.shape[1]):
mu_y_moist_SPCAM5.append(np.mean(X[:,i]))
sigma_y_moist_SPCAM5.append(np.std(X[:,i]))
mu_y_moist_SPCAM5 = np.array(np.array(mu_y_moist_SPCAM5),dtype=np.float32)
sigma_y_moist_SPCAM5 = np.array(np.array(sigma_y_moist_SPCAM5),dtype=np.float32)
np.save('norm/mu_y_moist_SPCAM5.npy',mu_y_moist_SPCAM5)
np.save('norm/sigma_y_moist_SPCAM5.npy',sigma_y_moist_SPCAM5)
else:
X = np.load('data_SPCAM5_hist/three_month_outputs_heat.npy')
X = np.array(X,dtype=np.float64)
mu_y_heat_SPCAM5, sigma_y_heat_SPCAM5 = [], []
for i in range(X.shape[1]):
mu_y_heat_SPCAM5.append(np.mean(X[:,i]))
sigma_y_heat_SPCAM5.append(np.std(X[:,i]))
mu_y_heat_SPCAM5 = np.array(np.array(mu_y_heat_SPCAM5),dtype=np.float32)
sigma_y_heat_SPCAM5 = np.array(np.array(sigma_y_heat_SPCAM5),dtype=np.float32)
np.save('norm/mu_y_heat_SPCAM5.npy',mu_y_heat_SPCAM5)
np.save('norm/sigma_y_heat_SPCAM5.npy',sigma_y_heat_SPCAM5)