|
|
|
|
|
|
|
|
""" |
|
|
Created on Wed Apr 19 23:40:45 2023 |
|
|
|
|
|
@author: mohamedazizbhouri |
|
|
""" |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
is_input = 0 |
|
|
case_var = 'moist' |
|
|
sim = 'CAM' |
|
|
|
|
|
if sim == 'CAM': |
|
|
if is_input == 1: |
|
|
X = np.load('data_CAM5_8K/all_inputs.npy') |
|
|
X = np.array(X,dtype=np.float64) |
|
|
|
|
|
mu_X_CAM5, sigma_X_CAM5 = [], [] |
|
|
|
|
|
|
|
|
for i in range(X.shape[1]): |
|
|
mu_X_CAM5.append(np.mean(X[:,i])) |
|
|
sigma_X_CAM5.append(np.std(X[:,i])) |
|
|
mu_X_CAM5 = np.array(np.array(mu_X_CAM5),dtype=np.float32) |
|
|
sigma_X_CAM5 = np.array(np.array(sigma_X_CAM5),dtype=np.float32) |
|
|
np.save('norm/mu_X_CAM5.npy',mu_X_CAM5) |
|
|
np.save('norm/sigma_X_CAM5.npy',sigma_X_CAM5) |
|
|
else: |
|
|
if case_var == 'moist': |
|
|
X = np.load('data_CAM5_8K/all_outputs_moist.npy') |
|
|
X = np.array(X,dtype=np.float64) |
|
|
|
|
|
mu_y_moist_CAM5, sigma_y_moist_CAM5 = [], [] |
|
|
for i in range(X.shape[1]): |
|
|
mu_y_moist_CAM5.append(np.mean(X[:,i])) |
|
|
sigma_y_moist_CAM5.append(np.std(X[:,i])) |
|
|
mu_y_moist_CAM5 = np.array(np.array(mu_y_moist_CAM5),dtype=np.float32) |
|
|
sigma_y_moist_CAM5 = np.array(np.array(sigma_y_moist_CAM5),dtype=np.float32) |
|
|
np.save('norm/mu_y_moist_CAM5.npy',mu_y_moist_CAM5) |
|
|
np.save('norm/sigma_y_moist_CAM5.npy',sigma_y_moist_CAM5) |
|
|
else: |
|
|
X = np.load('data_CAM5_8K/all_outputs_heat.npy') |
|
|
X = np.array(X,dtype=np.float64) |
|
|
|
|
|
mu_y_heat_CAM5, sigma_y_heat_CAM5 = [], [] |
|
|
for i in range(X.shape[1]): |
|
|
mu_y_heat_CAM5.append(np.mean(X[:,i])) |
|
|
sigma_y_heat_CAM5.append(np.std(X[:,i])) |
|
|
mu_y_heat_CAM5 = np.array(np.array(mu_y_heat_CAM5),dtype=np.float32) |
|
|
sigma_y_heat_CAM5 = np.array(np.array(sigma_y_heat_CAM5),dtype=np.float32) |
|
|
np.save('norm/mu_y_heat_CAM5.npy',mu_y_heat_CAM5) |
|
|
np.save('norm/sigma_y_heat_CAM5.npy',sigma_y_heat_CAM5) |
|
|
elif sim == 'SPCAM': |
|
|
if is_input == 1: |
|
|
X = np.load('data_SPCAM5_hist/three_month_inputs.npy') |
|
|
X = np.array(X,dtype=np.float64) |
|
|
|
|
|
mu_X_SPCAM5, sigma_X_SPCAM5 = [], [] |
|
|
|
|
|
|
|
|
for i in range(X.shape[1]): |
|
|
mu_X_SPCAM5.append(np.mean(X[:,i])) |
|
|
sigma_X_SPCAM5.append(np.std(X[:,i])) |
|
|
mu_X_SPCAM5 = np.array(np.array(mu_X_SPCAM5),dtype=np.float32) |
|
|
sigma_X_SPCAM5 = np.array(np.array(sigma_X_SPCAM5),dtype=np.float32) |
|
|
np.save('norm/mu_X_SPCAM5.npy',mu_X_SPCAM5) |
|
|
np.save('norm/sigma_X_SPCAM5.npy',sigma_X_SPCAM5) |
|
|
else: |
|
|
if case_var == 'moist': |
|
|
X = np.load('data_SPCAM5_hist/three_month_outputs_moist.npy') |
|
|
X = np.array(X,dtype=np.float64) |
|
|
|
|
|
mu_y_moist_SPCAM5, sigma_y_moist_SPCAM5 = [], [] |
|
|
for i in range(X.shape[1]): |
|
|
mu_y_moist_SPCAM5.append(np.mean(X[:,i])) |
|
|
sigma_y_moist_SPCAM5.append(np.std(X[:,i])) |
|
|
mu_y_moist_SPCAM5 = np.array(np.array(mu_y_moist_SPCAM5),dtype=np.float32) |
|
|
sigma_y_moist_SPCAM5 = np.array(np.array(sigma_y_moist_SPCAM5),dtype=np.float32) |
|
|
np.save('norm/mu_y_moist_SPCAM5.npy',mu_y_moist_SPCAM5) |
|
|
np.save('norm/sigma_y_moist_SPCAM5.npy',sigma_y_moist_SPCAM5) |
|
|
else: |
|
|
X = np.load('data_SPCAM5_hist/three_month_outputs_heat.npy') |
|
|
X = np.array(X,dtype=np.float64) |
|
|
|
|
|
mu_y_heat_SPCAM5, sigma_y_heat_SPCAM5 = [], [] |
|
|
for i in range(X.shape[1]): |
|
|
mu_y_heat_SPCAM5.append(np.mean(X[:,i])) |
|
|
sigma_y_heat_SPCAM5.append(np.std(X[:,i])) |
|
|
mu_y_heat_SPCAM5 = np.array(np.array(mu_y_heat_SPCAM5),dtype=np.float32) |
|
|
sigma_y_heat_SPCAM5 = np.array(np.array(sigma_y_heat_SPCAM5),dtype=np.float32) |
|
|
np.save('norm/mu_y_heat_SPCAM5.npy',mu_y_heat_SPCAM5) |
|
|
np.save('norm/sigma_y_heat_SPCAM5.npy',sigma_y_heat_SPCAM5) |
|
|
|