|
|
""" |
|
|
Data Processor for DeepSeek Children's Stories Model |
|
|
Handles dataset loading, preprocessing, and tokenization for children's story generation |
|
|
""" |
|
|
|
|
|
import tiktoken |
|
|
import os |
|
|
import numpy as np |
|
|
from datasets import load_dataset |
|
|
from tqdm.auto import tqdm |
|
|
import torch |
|
|
from typing import Dict, List, Optional |
|
|
|
|
|
def load_encoder_decoder(): |
|
|
"""Load the encoder and decoder for text processing""" |
|
|
enc = tiktoken.get_encoding("gpt2") |
|
|
return enc, enc |
|
|
|
|
|
class DeepSeekDataProcessor: |
|
|
def __init__(self, config=None): |
|
|
|
|
|
self.enc = tiktoken.get_encoding("gpt2") |
|
|
|
|
|
|
|
|
self.special_tokens = { |
|
|
"story_start": "<|story|>", |
|
|
"story_end": "</|story|>", |
|
|
"prompt_start": "<|prompt|>", |
|
|
"prompt_end": "</|prompt|>", |
|
|
"moral_start": "<|moral|>", |
|
|
"moral_end": "</|moral|>", |
|
|
"character_start": "<|character|>", |
|
|
"character_end": "</|character|>" |
|
|
} |
|
|
|
|
|
|
|
|
self.data_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "data") |
|
|
os.makedirs(self.data_dir, exist_ok=True) |
|
|
print(f"Data directory: {self.data_dir}") |
|
|
|
|
|
|
|
|
self.max_length = 1024 |
|
|
self.min_length = 50 |
|
|
|
|
|
def preprocess_text(self, text: str) -> str: |
|
|
"""Preprocess text for children's stories""" |
|
|
|
|
|
text = text.lower() |
|
|
text = text.replace('\n', ' ') |
|
|
text = ' '.join(text.split()) |
|
|
|
|
|
|
|
|
inappropriate_phrases = ['adult content', 'mature', 'explicit'] |
|
|
for phrase in inappropriate_phrases: |
|
|
if phrase in text: |
|
|
return "" |
|
|
|
|
|
|
|
|
if len(text) < self.min_length: |
|
|
return "" |
|
|
|
|
|
return text |
|
|
|
|
|
def extract_story_elements(self, example: Dict) -> Dict: |
|
|
"""Extract story elements for better structure""" |
|
|
prompt = self.preprocess_text(example.get('prompt', '')) |
|
|
story = self.preprocess_text(example.get('text', '')) |
|
|
|
|
|
|
|
|
moral = "" |
|
|
if 'moral' in example: |
|
|
moral = self.preprocess_text(example['moral']) |
|
|
elif 'lesson' in example: |
|
|
moral = self.preprocess_text(example['lesson']) |
|
|
|
|
|
|
|
|
character = "" |
|
|
if 'character' in example: |
|
|
character = self.preprocess_text(example['character']) |
|
|
|
|
|
return { |
|
|
'prompt': prompt, |
|
|
'story': story, |
|
|
'moral': moral, |
|
|
'character': character |
|
|
} |
|
|
|
|
|
def process(self, example: Dict) -> Dict: |
|
|
"""Process a single example for DeepSeek model""" |
|
|
|
|
|
elements = self.extract_story_elements(example) |
|
|
|
|
|
|
|
|
if not elements['story'] or not elements['prompt']: |
|
|
return {'ids': [], 'len': 0} |
|
|
|
|
|
|
|
|
full_text = ( |
|
|
f"{self.special_tokens['prompt_start']} {elements['prompt']} {self.special_tokens['prompt_end']} " |
|
|
) |
|
|
|
|
|
|
|
|
if elements['character']: |
|
|
full_text += f"{self.special_tokens['character_start']} {elements['character']} {self.special_tokens['character_end']} " |
|
|
|
|
|
|
|
|
full_text += f"{self.special_tokens['story_start']} {elements['story']} {self.special_tokens['story_end']}" |
|
|
|
|
|
|
|
|
if elements['moral']: |
|
|
full_text += f" {self.special_tokens['moral_start']} {elements['moral']} {self.special_tokens['moral_end']}" |
|
|
|
|
|
|
|
|
try: |
|
|
ids = self.enc.encode_ordinary(full_text) |
|
|
|
|
|
|
|
|
if len(ids) > self.max_length: |
|
|
ids = ids[:self.max_length] |
|
|
|
|
|
|
|
|
if len(ids) < 20: |
|
|
return {'ids': [], 'len': 0} |
|
|
|
|
|
out = {'ids': ids, 'len': len(ids)} |
|
|
return out |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Error tokenizing text: {e}") |
|
|
return {'ids': [], 'len': 0} |
|
|
|
|
|
def prepare_dataset(self) -> Dict: |
|
|
"""Prepare the Children Stories Collection dataset for DeepSeek training""" |
|
|
|
|
|
print("Loading Children Stories Collection dataset...") |
|
|
ds = load_dataset("ajibawa-2023/Children-Stories-Collection") |
|
|
|
|
|
train_bin_path = os.path.join(self.data_dir, "train.bin") |
|
|
val_bin_path = os.path.join(self.data_dir, "validation.bin") |
|
|
finetune_bin_path = os.path.join(self.data_dir, "finetune.bin") |
|
|
|
|
|
print(f"Checking for existing processed files...") |
|
|
|
|
|
|
|
|
if (os.path.exists(train_bin_path) and |
|
|
os.path.exists(val_bin_path) and |
|
|
os.path.exists(finetune_bin_path)): |
|
|
|
|
|
print("Found existing processed files!") |
|
|
print(f"Train file: {os.path.getsize(train_bin_path) / (1024*1024):.2f} MB") |
|
|
print(f"Validation file: {os.path.getsize(val_bin_path) / (1024*1024):.2f} MB") |
|
|
print(f"Finetune file: {os.path.getsize(finetune_bin_path) / (1024*1024):.2f} MB") |
|
|
|
|
|
return { |
|
|
"train": train_bin_path, |
|
|
"validation": val_bin_path, |
|
|
"finetune": finetune_bin_path |
|
|
} |
|
|
|
|
|
print("Processing dataset...") |
|
|
|
|
|
|
|
|
def filter_by_length(example): |
|
|
text_length = len(example.get('text', '')) |
|
|
return self.min_length <= text_length <= 2000 |
|
|
|
|
|
ds = ds.filter(filter_by_length) |
|
|
print(f"After filtering: {len(ds['train'])} examples") |
|
|
|
|
|
|
|
|
train_val_test = ds["train"].train_test_split(test_size=0.2, seed=42) |
|
|
val_finetune = train_val_test["test"].train_test_split(test_size=0.5, seed=42) |
|
|
|
|
|
|
|
|
ds = { |
|
|
"train": train_val_test["train"], |
|
|
"validation": val_finetune["train"], |
|
|
"finetune": val_finetune["test"] |
|
|
} |
|
|
|
|
|
print(f"Dataset split sizes:") |
|
|
print(f"Training set: {len(ds['train'])} examples") |
|
|
print(f"Validation set: {len(ds['validation'])} examples") |
|
|
print(f"Finetune set: {len(ds['finetune'])} examples") |
|
|
|
|
|
|
|
|
for split_name, split_data in ds.items(): |
|
|
print(f"\nProcessing {split_name} split...") |
|
|
|
|
|
|
|
|
tokenized = split_data.map( |
|
|
self.process, |
|
|
remove_columns=['text', 'prompt', 'text_token_length'], |
|
|
desc=f"tokenizing {split_name} split", |
|
|
num_proc=8, |
|
|
) |
|
|
|
|
|
|
|
|
tokenized = tokenized.filter(lambda x: x['len'] > 0) |
|
|
print(f"After processing: {len(tokenized)} valid examples") |
|
|
|
|
|
|
|
|
filename = os.path.join(self.data_dir, f"{split_name}.bin") |
|
|
print(f"Saving {split_name} split to: {filename}") |
|
|
|
|
|
|
|
|
arr_len = np.sum(tokenized['len'], dtype=np.uint64) |
|
|
dtype = np.uint16 |
|
|
arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,)) |
|
|
total_batches = 1024 |
|
|
|
|
|
idx = 0 |
|
|
for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'): |
|
|
batch = tokenized.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy') |
|
|
arr_batch = np.concatenate(batch['ids']) |
|
|
arr[idx : idx + len(arr_batch)] = arr_batch |
|
|
idx += len(arr_batch) |
|
|
arr.flush() |
|
|
|
|
|
|
|
|
if os.path.exists(filename): |
|
|
print(f"Successfully created {filename}") |
|
|
print(f"File size: {os.path.getsize(filename) / (1024*1024):.2f} MB") |
|
|
else: |
|
|
raise RuntimeError(f"Failed to create {filename}") |
|
|
|
|
|
return { |
|
|
"train": train_bin_path, |
|
|
"validation": val_bin_path, |
|
|
"finetune": finetune_bin_path |
|
|
} |
|
|
|
|
|
def load_binary_data(self, filepath: str) -> torch.Tensor: |
|
|
"""Load binary data file as tensor""" |
|
|
try: |
|
|
data = np.memmap(filepath, dtype=np.uint16, mode='r') |
|
|
return torch.from_numpy(data.copy()) |
|
|
except Exception as e: |
|
|
print(f"Error loading data from {filepath}: {e}") |
|
|
raise |
|
|
|
|
|
def get_batch(self, data: torch.Tensor, batch_size: int, block_size: int) -> tuple: |
|
|
"""Get a batch of data for training""" |
|
|
|
|
|
ix = torch.randint(len(data) - block_size, (batch_size,)) |
|
|
|
|
|
|
|
|
x = torch.stack([data[i:i+block_size].long() for i in ix]) |
|
|
|
|
|
y = torch.stack([data[i+1:i+1+block_size].long() for i in ix]) |
|
|
|
|
|
return x, y |
|
|
|
|
|
def decode_tokens(self, token_ids: List[int]) -> str: |
|
|
"""Decode token IDs back to text""" |
|
|
try: |
|
|
return self.enc.decode(token_ids) |
|
|
except Exception as e: |
|
|
print(f"Error decoding tokens: {e}") |
|
|
return "" |
|
|
|
|
|
def encode_text(self, text: str) -> List[int]: |
|
|
"""Encode text to token IDs""" |
|
|
try: |
|
|
return self.enc.encode_ordinary(text) |
|
|
except Exception as e: |
|
|
print(f"Error encoding text: {e}") |
|
|
return [] |
|
|
|
|
|
|
|
|
def main(): |
|
|
"""Main function to process the dataset""" |
|
|
print("DeepSeek Children's Stories Data Processor") |
|
|
print("=" * 50) |
|
|
|
|
|
processor = DeepSeekDataProcessor() |
|
|
processor.prepare_dataset() |
|
|
|
|
|
print("\nData processing completed successfully!") |
|
|
print("Files created:") |
|
|
print("- src/data/train.bin") |
|
|
print("- src/data/validation.bin") |
|
|
print("- src/data/finetune.bin") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |