fineweb-edu-6parquet-processed / data_processor.py
ThomasTheMaker's picture
Upload folder using huggingface_hub
9ca7c7f verified
"""
Data Processor for DeepSeek Children's Stories Model
Handles dataset loading, preprocessing, and tokenization for children's story generation
"""
import tiktoken
import os
import numpy as np
from datasets import load_dataset
from tqdm.auto import tqdm
import torch
from typing import Dict, List, Optional
def load_encoder_decoder():
"""Load the encoder and decoder for text processing"""
enc = tiktoken.get_encoding("gpt2")
return enc, enc
class DeepSeekDataProcessor:
def __init__(self, config=None):
# Initialize tokenizer with GPT-2 encoding
self.enc = tiktoken.get_encoding("gpt2")
# Special tokens for story structure (optimized for children's stories)
self.special_tokens = {
"story_start": "<|story|>",
"story_end": "</|story|>",
"prompt_start": "<|prompt|>",
"prompt_end": "</|prompt|>",
"moral_start": "<|moral|>",
"moral_end": "</|moral|>",
"character_start": "<|character|>",
"character_end": "</|character|>"
}
# Ensure data directory exists
self.data_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "data")
os.makedirs(self.data_dir, exist_ok=True)
print(f"Data directory: {self.data_dir}")
# Configuration for processing
self.max_length = 1024 # DeepSeek context window
self.min_length = 50 # Minimum story length
def preprocess_text(self, text: str) -> str:
"""Preprocess text for children's stories"""
# Basic text cleaning
text = text.lower() # Convert to lowercase for consistency
text = text.replace('\n', ' ') # Replace newlines with spaces
text = ' '.join(text.split()) # Normalize whitespace
# Remove any inappropriate content markers (basic filtering)
inappropriate_phrases = ['adult content', 'mature', 'explicit']
for phrase in inappropriate_phrases:
if phrase in text:
return ""
# Ensure the text is child-friendly
if len(text) < self.min_length:
return ""
return text
def extract_story_elements(self, example: Dict) -> Dict:
"""Extract story elements for better structure"""
prompt = self.preprocess_text(example.get('prompt', ''))
story = self.preprocess_text(example.get('text', ''))
# Extract potential moral or lesson
moral = ""
if 'moral' in example:
moral = self.preprocess_text(example['moral'])
elif 'lesson' in example:
moral = self.preprocess_text(example['lesson'])
# Extract main character if available
character = ""
if 'character' in example:
character = self.preprocess_text(example['character'])
return {
'prompt': prompt,
'story': story,
'moral': moral,
'character': character
}
def process(self, example: Dict) -> Dict:
"""Process a single example for DeepSeek model"""
# Extract story elements
elements = self.extract_story_elements(example)
# Skip if no valid content
if not elements['story'] or not elements['prompt']:
return {'ids': [], 'len': 0}
# Create structured text with special tokens
full_text = (
f"{self.special_tokens['prompt_start']} {elements['prompt']} {self.special_tokens['prompt_end']} "
)
# Add character information if available
if elements['character']:
full_text += f"{self.special_tokens['character_start']} {elements['character']} {self.special_tokens['character_end']} "
# Add the main story
full_text += f"{self.special_tokens['story_start']} {elements['story']} {self.special_tokens['story_end']}"
# Add moral if available
if elements['moral']:
full_text += f" {self.special_tokens['moral_start']} {elements['moral']} {self.special_tokens['moral_end']}"
# Tokenize with error handling
try:
ids = self.enc.encode_ordinary(full_text)
# Ensure the sequence isn't too long
if len(ids) > self.max_length:
ids = ids[:self.max_length]
# Skip if too short
if len(ids) < 20:
return {'ids': [], 'len': 0}
out = {'ids': ids, 'len': len(ids)}
return out
except Exception as e:
print(f"Error tokenizing text: {e}")
return {'ids': [], 'len': 0}
def prepare_dataset(self) -> Dict:
"""Prepare the Children Stories Collection dataset for DeepSeek training"""
# Load the Children Stories Collection dataset
print("Loading Children Stories Collection dataset...")
ds = load_dataset("ajibawa-2023/Children-Stories-Collection")
train_bin_path = os.path.join(self.data_dir, "train.bin")
val_bin_path = os.path.join(self.data_dir, "validation.bin")
finetune_bin_path = os.path.join(self.data_dir, "finetune.bin")
print(f"Checking for existing processed files...")
# Check if all files exist
if (os.path.exists(train_bin_path) and
os.path.exists(val_bin_path) and
os.path.exists(finetune_bin_path)):
print("Found existing processed files!")
print(f"Train file: {os.path.getsize(train_bin_path) / (1024*1024):.2f} MB")
print(f"Validation file: {os.path.getsize(val_bin_path) / (1024*1024):.2f} MB")
print(f"Finetune file: {os.path.getsize(finetune_bin_path) / (1024*1024):.2f} MB")
return {
"train": train_bin_path,
"validation": val_bin_path,
"finetune": finetune_bin_path
}
print("Processing dataset...")
# Filter out examples that are too short or too long
def filter_by_length(example):
text_length = len(example.get('text', ''))
return self.min_length <= text_length <= 2000 # Reasonable length for children's stories
ds = ds.filter(filter_by_length)
print(f"After filtering: {len(ds['train'])} examples")
# Split the dataset into train, validation, and finetune sets
train_val_test = ds["train"].train_test_split(test_size=0.2, seed=42)
val_finetune = train_val_test["test"].train_test_split(test_size=0.5, seed=42)
# Create a new dataset dictionary with all splits
ds = {
"train": train_val_test["train"],
"validation": val_finetune["train"],
"finetune": val_finetune["test"]
}
print(f"Dataset split sizes:")
print(f"Training set: {len(ds['train'])} examples")
print(f"Validation set: {len(ds['validation'])} examples")
print(f"Finetune set: {len(ds['finetune'])} examples")
# Process each split
for split_name, split_data in ds.items():
print(f"\nProcessing {split_name} split...")
# Process the data
tokenized = split_data.map(
self.process,
remove_columns=['text', 'prompt', 'text_token_length'],
desc=f"tokenizing {split_name} split",
num_proc=8,
)
# Filter out empty sequences
tokenized = tokenized.filter(lambda x: x['len'] > 0)
print(f"After processing: {len(tokenized)} valid examples")
# Save to binary file
filename = os.path.join(self.data_dir, f"{split_name}.bin")
print(f"Saving {split_name} split to: {filename}")
# Calculate total length
arr_len = np.sum(tokenized['len'], dtype=np.uint64)
dtype = np.uint16
arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,))
total_batches = 1024
idx = 0
for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'):
batch = tokenized.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy')
arr_batch = np.concatenate(batch['ids'])
arr[idx : idx + len(arr_batch)] = arr_batch
idx += len(arr_batch)
arr.flush()
# Verify file was created
if os.path.exists(filename):
print(f"Successfully created {filename}")
print(f"File size: {os.path.getsize(filename) / (1024*1024):.2f} MB")
else:
raise RuntimeError(f"Failed to create {filename}")
return {
"train": train_bin_path,
"validation": val_bin_path,
"finetune": finetune_bin_path
}
def load_binary_data(self, filepath: str) -> torch.Tensor:
"""Load binary data file as tensor"""
try:
data = np.memmap(filepath, dtype=np.uint16, mode='r')
return torch.from_numpy(data.copy())
except Exception as e:
print(f"Error loading data from {filepath}: {e}")
raise
def get_batch(self, data: torch.Tensor, batch_size: int, block_size: int) -> tuple:
"""Get a batch of data for training"""
# Generate random indices
ix = torch.randint(len(data) - block_size, (batch_size,))
# Get input sequences
x = torch.stack([data[i:i+block_size].long() for i in ix])
# Get target sequences (shifted by 1)
y = torch.stack([data[i+1:i+1+block_size].long() for i in ix])
return x, y
def decode_tokens(self, token_ids: List[int]) -> str:
"""Decode token IDs back to text"""
try:
return self.enc.decode(token_ids)
except Exception as e:
print(f"Error decoding tokens: {e}")
return ""
def encode_text(self, text: str) -> List[int]:
"""Encode text to token IDs"""
try:
return self.enc.encode_ordinary(text)
except Exception as e:
print(f"Error encoding text: {e}")
return []
def main():
"""Main function to process the dataset"""
print("DeepSeek Children's Stories Data Processor")
print("=" * 50)
processor = DeepSeekDataProcessor()
processor.prepare_dataset()
print("\nData processing completed successfully!")
print("Files created:")
print("- src/data/train.bin")
print("- src/data/validation.bin")
print("- src/data/finetune.bin")
if __name__ == "__main__":
main()