language:
- en
size_categories:
- 10K<n<100K
task_categories:
- summarization
- image-to-text
- text-generation
tags:
- summarization
- vision
- DeepSeek-OCR
- multilingual
- visual-text-encoding
- random-augmentation
library_name: datasets
license: mit
pretty_name: XSum BBC News Summarization
dataset_info:
features:
- name: text
dtype: string
- name: summary
dtype: string
- name: image
dtype: image
- name: source_dataset
dtype: string
- name: original_split
dtype: string
- name: original_index
dtype: int64
splits:
- name: train
num_examples: 204017
DeepSynth - XSum BBC News Summarization
Dataset Description
BBC news articles with single-sentence summaries. Focused on extreme summarization where the summary is a single sentence capturing the essence of the article.
This dataset is part of the DeepSynth project, which uses visual text encoding for multilingual summarization with the DeepSeek-OCR vision-language model. Text documents are converted into images and processed through a frozen 380M parameter visual encoder, enabling 20x token compression while preserving document layout and structure.
Key Features
- Original High-Quality Images: Full-resolution images stored once, augmented on-the-fly during training
- Random Augmentation Pipeline: Rotation, perspective, color jitter, and resize transforms for better generalization
- Visual Text Encoding: 20x compression ratio (1 visual token ≈ 20 text tokens)
- Document Structure Preservation: Layout and formatting maintained through image representation
- Human-Written Summaries: High-quality reference summaries for each document
- Deduplication Tracking: Source dataset and index tracking prevents duplicates
Dataset Statistics
- Total Samples: ~50,000
- Language(s): English
- Domain: BBC news articles
- Average Document Length: ~400 tokens
- Average Summary Length: ~20 tokens (single sentence)
Source Dataset
Based on the XSum dataset from BBC articles (2010-2017).
- Original Authors: Narayan et al. (2018)
- Paper: Don't Give Me the Details, Just the Summary!
- License: MIT License
Image Augmentation Pipeline
Images are stored at original resolution (up to 1600×2200) and augmented during training for better generalization:
Available Augmentation Transforms
- Random Rotation: ±10° rotation for orientation invariance
- Random Perspective: 0.1-0.2 distortion to simulate viewing angles
- Random Resize: 512-1600px range for multi-scale learning
- Color Jitter: Brightness, contrast, saturation adjustments (±20%)
- Random Horizontal Flip: Optional (use with caution for text)
All transforms preserve aspect ratio with padding to maintain text readability. This approach:
- Reduces storage: 6x less disk space (single image vs 6 resolutions)
- Increases flexibility: Any resolution on-the-fly vs pre-computed fixed sizes
- Improves generalization: Random transforms prevent overfitting to specific resolutions
Dataset Structure
Data Fields
text(string): Original document textsummary(string): Human-written summaryimage(PIL.Image): Original full-size rendered document image (up to 1600×2200)source_dataset(string): Origin dataset nameoriginal_split(string): Source split (train/validation/test)original_index(int): Original sample index for deduplication
Data Example
{
'text': 'The government has announced new measures to...',
'summary': 'Government unveils climate change plan.',
'image': <PIL.Image>, # Original resolution (up to 1600×2200)
'source_dataset': 'Rexhaif/xsum_reduced',
'original_split': 'train',
'original_index': 0
}
Usage
Loading the Dataset
from datasets import load_dataset
# Load full dataset
dataset = load_dataset("baconnier/deepsynth-en-xsum")
# Streaming for large datasets
dataset = load_dataset("baconnier/deepsynth-en-xsum", streaming=True)
Training Example with DeepSeek-OCR and Augmentation
from transformers import AutoProcessor, AutoModelForVision2Seq
from datasets import load_dataset
from deepsynth.data.transforms import create_training_transform
# Load model and processor
model = AutoModelForVision2Seq.from_pretrained("deepseek-ai/DeepSeek-OCR")
processor = AutoProcessor.from_pretrained("deepseek-ai/DeepSeek-OCR")
# Load dataset
dataset = load_dataset("baconnier/deepsynth-en-xsum")
# Create augmentation pipeline (random rotation, perspective, resize, color jitter)
transform = create_training_transform(
target_size_range=(512, 1600), # Random resize range
rotation_degrees=10, # ±10° rotation
perspective_distortion=0.1, # Perspective transform
brightness_factor=0.2, # ±20% brightness
contrast_factor=0.2, # ±20% contrast
)
# Process sample with augmentation
sample = dataset['train'][0]
augmented_image = transform(sample['image']) # Apply random transforms
inputs = processor(
images=augmented_image,
text=sample['text'],
return_tensors="pt"
)
# Fine-tune decoder only (freeze encoder)
for param in model.encoder.parameters():
param.requires_grad = False
# Training loop with on-the-fly augmentation...
Training Recommendations
DeepSeek-OCR Fine-Tuning
# Recommended hyperparameters with augmentation
training_args = {
"learning_rate": 2e-5,
"batch_size": 4,
"gradient_accumulation_steps": 4,
"num_epochs": 3,
"mixed_precision": "bf16",
"freeze_encoder": True, # IMPORTANT: Only fine-tune decoder
# Augmentation parameters
"rotation_degrees": 10, # Random rotation ±10°
"perspective_distortion": 0.1, # Perspective transform
"resize_range": (512, 1600), # Random resize 512-1600px
"brightness_factor": 0.2, # ±20% brightness
"contrast_factor": 0.2, # ±20% contrast
}
Expected Performance
- Baseline (text-to-text): ROUGE-1 ~40-42
- DeepSeek-OCR (visual): ROUGE-1 ~44-47 (typical SOTA)
- Training Time: ~6-8 hours on A100 (80GB) for full dataset
- GPU Memory: ~40GB with batch_size=4, mixed_precision=bf16
Dataset Creation
This dataset was created using the DeepSynth pipeline:
- Source Loading: Original text documents from Rexhaif/xsum_reduced
- Text-to-Image Conversion: Documents rendered as PNG images (DejaVu Sans 12pt, Unicode support)
- Original Resolution Storage: Full-quality images stored once (up to 1600×2200)
- Incremental Upload: Batches of 5,000 samples uploaded to HuggingFace Hub
- Deduplication: Source tracking prevents duplicate samples
Note: Images are augmented on-the-fly during training using random transformations (rotation, perspective, resize, color jitter) for better generalization across different resolutions and conditions.
Rendering Specifications
- Font: DejaVu Sans 12pt (full Unicode support for multilingual text)
- Line Wrapping: 100 characters per line
- Margin: 40px
- Background: White (255, 255, 255)
- Text Color: Black (0, 0, 0)
- Format: PNG with lossless compression
Citation
If you use this dataset in your research, please cite:
@misc{deepsynth-en-xsum,
title={{DeepSynth XSum BBC News Summarization: Visual Text Encoding with Random Augmentation for Summarization}},
author={Baconnier},
year={2025},
publisher={HuggingFace},
howpublished={\url{https://huggingface.co/datasets/baconnier/deepsynth-en-xsum}}
}
Source Dataset Citation
@inproceedings{narayan2018don,
title={Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization},
author={Narayan, Shashi and Cohen, Shay B and Lapata, Mirella},
booktitle={Proceedings of EMNLP},
year={2018}
}
License
MIT License - See source dataset for full license terms.
Note: This dataset inherits the license from the original source dataset. Please review the source license before commercial use.
Limitations and Bias
- Extreme summarization: Single-sentence summaries may lose important details
- UK-centric: Primarily British news and perspectives
- Short summaries: Not suitable for multi-sentence summary training
- Temporal bias: Articles from 2010-2017
Additional Information
Dataset Curators
Created by the DeepSynth team as part of multilingual visual summarization research.
Contact
- Repository: DeepSynth GitHub
- Issues: GitHub Issues
Acknowledgments
- DeepSeek-OCR: Visual encoder from DeepSeek AI
- Source Dataset: Rexhaif/xsum_reduced
- HuggingFace: Dataset hosting and infrastructure