|
|
--- |
|
|
license: apache-2.0 |
|
|
task_categories: |
|
|
- tabular-classification |
|
|
tags: |
|
|
- nigeria |
|
|
- banking |
|
|
- finance |
|
|
- fraud-detection |
|
|
- synthetic |
|
|
- african-data |
|
|
language: |
|
|
- en |
|
|
size_categories: |
|
|
- 1M<n<10M |
|
|
--- |
|
|
|
|
|
# Agent Network (Super Agents, Master Agents, Sub-Agents) |
|
|
|
|
|
## Dataset Description |
|
|
|
|
|
Nigerian banking agents and their transactions with fraud labels |
|
|
|
|
|
This is a **production-grade synthetic dataset** with authentic Nigerian banking context, designed for agent fraud detection, network optimization, and commission management. |
|
|
|
|
|
### Key Features |
|
|
|
|
|
- π³π¬ **Nigerian Context**: Real bank names, states, demographics |
|
|
- π **ML-Ready Labels**: Fraud flag (2.5% prevalence) |
|
|
- β‘ **Large Scale**: 2,000,000 rows |
|
|
- π― **Realistic Distributions**: Lognormal volumes, agent type hierarchies, commission structures |
|
|
- π
**Temporal Coverage**: 2023-01-01 to 2024-12-31 |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
### Splits |
|
|
|
|
|
- **Train**: 1,400,000 rows (70%) |
|
|
- **Validation**: 300,000 rows (15%) |
|
|
- **Test**: 300,000 rows (15%) |
|
|
|
|
|
### Schema |
|
|
|
|
|
**Key columns**: agent_id, agent_name, state, agent_type (super/master/sub), monthly_volume_ngn, monthly_transactions, commission_rate, kyc_tier, fraud_flag |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
# Load full dataset |
|
|
dataset = load_dataset("electricsheepafrica/nigerian_agent_network") |
|
|
|
|
|
# Load specific split |
|
|
train_data = load_dataset("electricsheepafrica/nigerian_agent_network", split="train") |
|
|
``` |
|
|
|
|
|
## Labels |
|
|
|
|
|
- **Type**: Fraud flag (2.5% prevalence) |
|
|
- **Use Case**: agent fraud detection, network optimization, and commission management |
|
|
|
|
|
## Nigerian Context |
|
|
|
|
|
Nigerian agent banking network structure, super agent chains, rural agent distributions across 37 states, KYC tier distributions, and fraud patterns including float diversion and fake transactions. |
|
|
|
|
|
## Citation |
|
|
|
|
|
```bibtex |
|
|
@dataset{nigerian_banking_agent_network, |
|
|
title = {Nigerian Agent Network (Super Agents, Master Agents, Sub-Agents)}, |
|
|
author = {Electric Sheep Africa}, |
|
|
year = {2025}, |
|
|
publisher = {Hugging Face}, |
|
|
howpublished = {\url{https://huggingface.co/datasets/electricsheepafrica/nigerian_agent_network}} |
|
|
} |
|
|
``` |
|
|
|
|
|
## License |
|
|
|
|
|
Apache 2.0 - Free for commercial and research use. |
|
|
|
|
|
## Contact |
|
|
|
|
|
- **Organization**: Electric Sheep Africa |
|
|
- **Collection**: [Nigeria Banking & Finance Datasets](https://huggingface.co/collections/electricsheepafrica/nigeria-banking) |
|
|
|