Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware
Paper
•
2304.13705
•
Published
•
6
Action Chunking with Transformers (ACT) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from tele-operated data and often achieves high success rates.
This policy has been trained and pushed to the Hub using LeRobot. See the full documentation at LeRobot Docs.
For a complete walkthrough, see the training guide. Below is the short version on how to train and run inference/eval:
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
Writes checkpoints to outputs/train/<desired_policy_repo_id>/checkpoints/.
python -m lerobot.record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
Prefix the dataset repo with eval_ and supply --policy.path pointing to a local or hub checkpoint.