Engr-arehmankhan786's picture
Update app.py
b046ea6 verified
import gradio as gr
from transformers import MarianMTModel, MarianTokenizer
# Load models for both directions
en_to_ur_model_name = "Helsinki-NLP/opus-mt-en-ur"
ur_to_en_model_name = "Helsinki-NLP/opus-mt-ur-en"
en_to_ur_tokenizer = MarianTokenizer.from_pretrained(en_to_ur_model_name)
en_to_ur_model = MarianMTModel.from_pretrained(en_to_ur_model_name)
ur_to_en_tokenizer = MarianTokenizer.from_pretrained(ur_to_en_model_name)
ur_to_en_model = MarianMTModel.from_pretrained(ur_to_en_model_name)
# Translation function
def translate(text, direction):
if direction == "English to Urdu":
tokenizer = en_to_ur_tokenizer
model = en_to_ur_model
else:
tokenizer = ur_to_en_tokenizer
model = ur_to_en_model
inputs = tokenizer(text, return_tensors="pt", padding=True)
translated = model.generate(**inputs)
output = tokenizer.decode(translated[0], skip_special_tokens=True)
return output
# Gradio interface
demo = gr.Interface(
fn=translate,
inputs=[
gr.Textbox(label="Enter Text"),
gr.Radio(["English to Urdu", "Urdu to English"], label="Translation Direction")
],
outputs=gr.Textbox(label="Translated Text"),
title="English ↔ Urdu Translator",
description="Translate between English and Urdu using Hugging Face Transformers."
)
demo.launch()