|
|
import gradio as gr |
|
|
from transformers import MarianMTModel, MarianTokenizer |
|
|
|
|
|
|
|
|
en_to_ur_model_name = "Helsinki-NLP/opus-mt-en-ur" |
|
|
ur_to_en_model_name = "Helsinki-NLP/opus-mt-ur-en" |
|
|
|
|
|
en_to_ur_tokenizer = MarianTokenizer.from_pretrained(en_to_ur_model_name) |
|
|
en_to_ur_model = MarianMTModel.from_pretrained(en_to_ur_model_name) |
|
|
|
|
|
ur_to_en_tokenizer = MarianTokenizer.from_pretrained(ur_to_en_model_name) |
|
|
ur_to_en_model = MarianMTModel.from_pretrained(ur_to_en_model_name) |
|
|
|
|
|
|
|
|
def translate(text, direction): |
|
|
if direction == "English to Urdu": |
|
|
tokenizer = en_to_ur_tokenizer |
|
|
model = en_to_ur_model |
|
|
else: |
|
|
tokenizer = ur_to_en_tokenizer |
|
|
model = ur_to_en_model |
|
|
|
|
|
inputs = tokenizer(text, return_tensors="pt", padding=True) |
|
|
translated = model.generate(**inputs) |
|
|
output = tokenizer.decode(translated[0], skip_special_tokens=True) |
|
|
return output |
|
|
|
|
|
|
|
|
demo = gr.Interface( |
|
|
fn=translate, |
|
|
inputs=[ |
|
|
gr.Textbox(label="Enter Text"), |
|
|
gr.Radio(["English to Urdu", "Urdu to English"], label="Translation Direction") |
|
|
], |
|
|
outputs=gr.Textbox(label="Translated Text"), |
|
|
title="English ↔ Urdu Translator", |
|
|
description="Translate between English and Urdu using Hugging Face Transformers." |
|
|
) |
|
|
|
|
|
demo.launch() |