SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-2d-matryoshka")
# Run inference
sentences = [
    'A plane in the sky.',
    'Two airplanes in the sky.',
    'Nelson Mandela undergoes surgery',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset: sts-dev
- Evaluated with EmbeddingSimilarityEvaluator
| Metric | Value | 
|---|---|
| pearson_cosine | 0.8395 | 
| spearman_cosine | 0.8425 | 
| pearson_manhattan | 0.8433 | 
| spearman_manhattan | 0.8436 | 
| pearson_euclidean | 0.8441 | 
| spearman_euclidean | 0.8449 | 
| pearson_dot | 0.7638 | 
| spearman_dot | 0.757 | 
| pearson_max | 0.8441 | 
| spearman_max | 0.8449 | 
Semantic Similarity
- Dataset: sts-test
- Evaluated with EmbeddingSimilarityEvaluator
| Metric | Value | 
|---|---|
| pearson_cosine | 0.8187 | 
| spearman_cosine | 0.8171 | 
| pearson_manhattan | 0.8117 | 
| spearman_manhattan | 0.8049 | 
| pearson_euclidean | 0.8127 | 
| spearman_euclidean | 0.8058 | 
| pearson_dot | 0.7396 | 
| spearman_dot | 0.7256 | 
| pearson_max | 0.8187 | 
| spearman_max | 0.8171 | 
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at 65dd388
- Size: 557,850 training samples
- Columns: anchor,positive, andnegative
- Approximate statistics based on the first 1000 samples:anchor positive negative type string string string details - min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
 - min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
 - min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
 
- Samples:anchor positive negative A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.A person is at a diner, ordering an omelette.Children smiling and waving at cameraThere are children presentThe kids are frowningA boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.The boy skates down the sidewalk.
- Loss: Matryoshka2dLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": 1 }
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns: sentence1,sentence2, andscore
- Approximate statistics based on the first 1000 samples:sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 15.0 tokens
- max: 44 tokens
 - min: 6 tokens
- mean: 14.99 tokens
- max: 61 tokens
 - min: 0.0
- mean: 0.47
- max: 1.0
 
- Samples:sentence1 sentence2 score A man with a hard hat is dancing.A man wearing a hard hat is dancing.1.0A young child is riding a horse.A child is riding a horse.0.95A man is feeding a mouse to a snake.The man is feeding a mouse to the snake.1.0
- Loss: Matryoshka2dLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": 1 }
Training Hyperparameters
Non-Default Hyperparameters
- eval_strategy: steps
- per_device_train_batch_size: 128
- per_device_eval_batch_size: 128
- num_train_epochs: 1
- warmup_ratio: 0.1
- fp16: True
- batch_sampler: no_duplicates
All Hyperparameters
Click to expand
- overwrite_output_dir: False
- do_predict: False
- eval_strategy: steps
- prediction_loss_only: False
- per_device_train_batch_size: 128
- per_device_eval_batch_size: 128
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 1
- eval_accumulation_steps: None
- learning_rate: 5e-05
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1.0
- num_train_epochs: 1
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.1
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 42
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: False
- fp16: True
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: False
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: None
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: False
- hub_always_push: False
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- eval_do_concat_batches: True
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- dispatch_batches: None
- split_batches: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- batch_sampler: no_duplicates
- multi_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | 
|---|---|---|---|---|---|
| 0.0229 | 100 | 6.2779 | 3.9959 | 0.8008 | - | 
| 0.0459 | 200 | 4.3212 | 3.5818 | 0.7956 | - | 
| 0.0688 | 300 | 3.7135 | 3.4422 | 0.7940 | - | 
| 0.0918 | 400 | 3.5567 | 3.5458 | 0.7951 | - | 
| 0.1147 | 500 | 3.1297 | 3.1253 | 0.8050 | - | 
| 0.1376 | 600 | 2.7001 | 3.4366 | 0.7996 | - | 
| 0.1606 | 700 | 2.8664 | 3.6609 | 0.8033 | - | 
| 0.1835 | 800 | 2.6656 | 3.3736 | 0.7975 | - | 
| 0.2065 | 900 | 2.633 | 3.3735 | 0.8076 | - | 
| 0.2294 | 1000 | 2.4335 | 3.6499 | 0.7996 | - | 
| 0.2524 | 1100 | 2.4165 | 3.6301 | 0.8015 | - | 
| 0.2753 | 1200 | 2.2942 | 3.1541 | 0.7994 | - | 
| 0.2982 | 1300 | 2.2402 | 3.4284 | 0.7977 | - | 
| 0.3212 | 1400 | 2.2148 | 3.3775 | 0.7988 | - | 
| 0.3441 | 1500 | 2.2285 | 3.6097 | 0.8016 | - | 
| 0.3671 | 1600 | 2.0591 | 3.3839 | 0.7926 | - | 
| 0.3900 | 1700 | 2.0253 | 3.1113 | 0.7981 | - | 
| 0.4129 | 1800 | 2.0244 | 3.8289 | 0.7954 | - | 
| 0.4359 | 1900 | 1.8582 | 3.3515 | 0.8000 | - | 
| 0.4588 | 2000 | 1.977 | 3.3054 | 0.7917 | - | 
| 0.4818 | 2100 | 1.9028 | 3.2166 | 0.7927 | - | 
| 0.5047 | 2200 | 1.8316 | 3.6504 | 0.7955 | - | 
| 0.5276 | 2300 | 1.8404 | 3.2822 | 0.7843 | - | 
| 0.5506 | 2400 | 1.8455 | 3.2583 | 0.7941 | - | 
| 0.5735 | 2500 | 1.9488 | 3.3970 | 0.7971 | - | 
| 0.5965 | 2600 | 1.9403 | 2.8948 | 0.7959 | - | 
| 0.6194 | 2700 | 1.8884 | 3.2227 | 0.8008 | - | 
| 0.6423 | 2800 | 1.8655 | 3.1948 | 0.7920 | - | 
| 0.6653 | 2900 | 1.8567 | 3.4374 | 0.7913 | - | 
| 0.6882 | 3000 | 1.8423 | 3.1118 | 0.7949 | - | 
| 0.7112 | 3100 | 1.7475 | 3.1359 | 0.8062 | - | 
| 0.7341 | 3200 | 1.8166 | 2.9927 | 0.7984 | - | 
| 0.7571 | 3300 | 1.5626 | 3.5143 | 0.8405 | - | 
| 0.7800 | 3400 | 1.2038 | 3.3909 | 0.8411 | - | 
| 0.8029 | 3500 | 1.1579 | 3.2458 | 0.8413 | - | 
| 0.8259 | 3600 | 1.0978 | 3.1592 | 0.8404 | - | 
| 0.8488 | 3700 | 1.0283 | 2.9557 | 0.8408 | - | 
| 0.8718 | 3800 | 0.9993 | 3.4073 | 0.8430 | - | 
| 0.8947 | 3900 | 0.9727 | 3.0570 | 0.8434 | - | 
| 0.9176 | 4000 | 0.9692 | 2.9357 | 0.8439 | - | 
| 0.9406 | 4100 | 0.9412 | 2.9494 | 0.8428 | - | 
| 0.9635 | 4200 | 1.0063 | 3.4047 | 0.8422 | - | 
| 0.9865 | 4300 | 0.9678 | 3.4299 | 0.8425 | - | 
| 1.0 | 4359 | - | - | - | 0.8171 | 
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.178 kWh
- Carbon Emitted: 0.069 kg of CO2
- Hours Used: 0.626 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Matryoshka2dLoss
@misc{li20242d,
    title={2D Matryoshka Sentence Embeddings}, 
    author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
    year={2024},
    eprint={2402.14776},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
- Downloads last month
- 6
Model tree for tomaarsen/distilroberta-base-nli-2d-matryoshka
Base model
distilbert/distilroberta-baseEvaluation results
- Pearson Cosine on sts devself-reported0.840
- Spearman Cosine on sts devself-reported0.842
- Pearson Manhattan on sts devself-reported0.843
- Spearman Manhattan on sts devself-reported0.844
- Pearson Euclidean on sts devself-reported0.844
- Spearman Euclidean on sts devself-reported0.845
- Pearson Dot on sts devself-reported0.764
- Spearman Dot on sts devself-reported0.757
- Pearson Max on sts devself-reported0.844
- Spearman Max on sts devself-reported0.845
