metadata
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:Matryoshka2dLoss
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: distilbert/distilroberta-base
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: A woman is reading.
sentences:
- A woman is writing something.
- A man helps a boy ride a bike.
- A group wading across a ditch
- source_sentence: A man shoots a man.
sentences:
- A man with a pistol shoots another man.
- Suicide bomber strikes in Syria
- China and Taiwan hold historic talks
- source_sentence: A boy is vacuuming.
sentences:
- A little boy is vacuuming the floor.
- 'Breivik: Jail term ''ridiculous'''
- Glorious triple-gold night for Britain
- source_sentence: A man is spitting.
sentences:
- A man is speaking.
- The boy is jumping into a lake.
- 10 Things to Know for Thursday
- source_sentence: A plane in the sky.
sentences:
- Two airplanes in the sky.
- Nelson Mandela undergoes surgery
- Nelson Mandela undergoes surgery
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 69.2573690422145
energy_consumed: 0.1781760038338226
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.626
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on distilbert/distilroberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8395203447657347
name: Pearson Cosine
- type: spearman_cosine
value: 0.8424556124488326
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8432537220190851
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8435994230515586
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8440900768179745
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8449067313707376
name: Spearman Euclidean
- type: pearson_dot
value: 0.763767029856877
name: Pearson Dot
- type: spearman_dot
value: 0.7569706383510251
name: Spearman Dot
- type: pearson_max
value: 0.8440900768179745
name: Pearson Max
- type: spearman_max
value: 0.8449067313707376
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8186702838538092
name: Pearson Cosine
- type: spearman_cosine
value: 0.8170686920551
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8117192659894803
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.804879002947593
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8127154744140831
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8058410028545979
name: Spearman Euclidean
- type: pearson_dot
value: 0.7396245702595934
name: Pearson Dot
- type: spearman_dot
value: 0.7256120569318246
name: Spearman Dot
- type: pearson_max
value: 0.8186702838538092
name: Pearson Max
- type: spearman_max
value: 0.8170686920551
name: Spearman Max
SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-2d-matryoshka")
# Run inference
sentences = [
'A plane in the sky.',
'Two airplanes in the sky.',
'Nelson Mandela undergoes surgery',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.8395 |
| spearman_cosine | 0.8425 |
| pearson_manhattan | 0.8433 |
| spearman_manhattan | 0.8436 |
| pearson_euclidean | 0.8441 |
| spearman_euclidean | 0.8449 |
| pearson_dot | 0.7638 |
| spearman_dot | 0.757 |
| pearson_max | 0.8441 |
| spearman_max | 0.8449 |
Semantic Similarity
- Dataset:
sts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.8187 |
| spearman_cosine | 0.8171 |
| pearson_manhattan | 0.8117 |
| spearman_manhattan | 0.8049 |
| pearson_euclidean | 0.8127 |
| spearman_euclidean | 0.8058 |
| pearson_dot | 0.7396 |
| spearman_dot | 0.7256 |
| pearson_max | 0.8187 |
| spearman_max | 0.8171 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at 65dd388
- Size: 557,850 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.A person is at a diner, ordering an omelette.Children smiling and waving at cameraThere are children presentThe kids are frowningA boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.The boy skates down the sidewalk. - Loss:
Matryoshka2dLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": 1 }
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 15.0 tokens
- max: 44 tokens
- min: 6 tokens
- mean: 14.99 tokens
- max: 61 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.A man wearing a hard hat is dancing.1.0A young child is riding a horse.A child is riding a horse.0.95A man is feeding a mouse to a snake.The man is feeding a mouse to the snake.1.0 - Loss:
Matryoshka2dLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": 1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128num_train_epochs: 1warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Falseper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Nonedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|
| 0.0229 | 100 | 6.2779 | 3.9959 | 0.8008 | - |
| 0.0459 | 200 | 4.3212 | 3.5818 | 0.7956 | - |
| 0.0688 | 300 | 3.7135 | 3.4422 | 0.7940 | - |
| 0.0918 | 400 | 3.5567 | 3.5458 | 0.7951 | - |
| 0.1147 | 500 | 3.1297 | 3.1253 | 0.8050 | - |
| 0.1376 | 600 | 2.7001 | 3.4366 | 0.7996 | - |
| 0.1606 | 700 | 2.8664 | 3.6609 | 0.8033 | - |
| 0.1835 | 800 | 2.6656 | 3.3736 | 0.7975 | - |
| 0.2065 | 900 | 2.633 | 3.3735 | 0.8076 | - |
| 0.2294 | 1000 | 2.4335 | 3.6499 | 0.7996 | - |
| 0.2524 | 1100 | 2.4165 | 3.6301 | 0.8015 | - |
| 0.2753 | 1200 | 2.2942 | 3.1541 | 0.7994 | - |
| 0.2982 | 1300 | 2.2402 | 3.4284 | 0.7977 | - |
| 0.3212 | 1400 | 2.2148 | 3.3775 | 0.7988 | - |
| 0.3441 | 1500 | 2.2285 | 3.6097 | 0.8016 | - |
| 0.3671 | 1600 | 2.0591 | 3.3839 | 0.7926 | - |
| 0.3900 | 1700 | 2.0253 | 3.1113 | 0.7981 | - |
| 0.4129 | 1800 | 2.0244 | 3.8289 | 0.7954 | - |
| 0.4359 | 1900 | 1.8582 | 3.3515 | 0.8000 | - |
| 0.4588 | 2000 | 1.977 | 3.3054 | 0.7917 | - |
| 0.4818 | 2100 | 1.9028 | 3.2166 | 0.7927 | - |
| 0.5047 | 2200 | 1.8316 | 3.6504 | 0.7955 | - |
| 0.5276 | 2300 | 1.8404 | 3.2822 | 0.7843 | - |
| 0.5506 | 2400 | 1.8455 | 3.2583 | 0.7941 | - |
| 0.5735 | 2500 | 1.9488 | 3.3970 | 0.7971 | - |
| 0.5965 | 2600 | 1.9403 | 2.8948 | 0.7959 | - |
| 0.6194 | 2700 | 1.8884 | 3.2227 | 0.8008 | - |
| 0.6423 | 2800 | 1.8655 | 3.1948 | 0.7920 | - |
| 0.6653 | 2900 | 1.8567 | 3.4374 | 0.7913 | - |
| 0.6882 | 3000 | 1.8423 | 3.1118 | 0.7949 | - |
| 0.7112 | 3100 | 1.7475 | 3.1359 | 0.8062 | - |
| 0.7341 | 3200 | 1.8166 | 2.9927 | 0.7984 | - |
| 0.7571 | 3300 | 1.5626 | 3.5143 | 0.8405 | - |
| 0.7800 | 3400 | 1.2038 | 3.3909 | 0.8411 | - |
| 0.8029 | 3500 | 1.1579 | 3.2458 | 0.8413 | - |
| 0.8259 | 3600 | 1.0978 | 3.1592 | 0.8404 | - |
| 0.8488 | 3700 | 1.0283 | 2.9557 | 0.8408 | - |
| 0.8718 | 3800 | 0.9993 | 3.4073 | 0.8430 | - |
| 0.8947 | 3900 | 0.9727 | 3.0570 | 0.8434 | - |
| 0.9176 | 4000 | 0.9692 | 2.9357 | 0.8439 | - |
| 0.9406 | 4100 | 0.9412 | 2.9494 | 0.8428 | - |
| 0.9635 | 4200 | 1.0063 | 3.4047 | 0.8422 | - |
| 0.9865 | 4300 | 0.9678 | 3.4299 | 0.8425 | - |
| 1.0 | 4359 | - | - | - | 0.8171 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.178 kWh
- Carbon Emitted: 0.069 kg of CO2
- Hours Used: 0.626 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Matryoshka2dLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}