Whisper Large V3 Turbo · Core ML (Option A1)
Optimized Core ML export of openai/whisper-large-v3-turbo targeting Apple Silicon. This repository distributes the production bundle used to reach ~0.024 real-time factor (RTF) described in the Option A1 implementation plan.
Contents
whisper-large-v3-turbo-coreml-fp16/– unpacked model bundle with encoder/decoder mlpackages, tokenizer assets, and metadata.whisper-large-v3-turbo-coreml-fp16.tar.gz– identical bundle packaged as a tarball for one-shot download.whisper-large-v3-turbo-coreml-fp16.sha256– checksum for the tarball.
Inside the directory you will find:
Encoder.mlpackageDecoderWithCache.mlpackage(primary, tensor-cache decoder)DecoderFull.mlpackage(fallback)DecoderStateful.mlpackage(experimental; see note below)- Tokenizer + mel filter assets and metadata JSON files
README.mdandMODEL_CARD.mdwith usage and performance details
Usage
Download the snapshot via
huggingface-cliorsnapshot_download:from huggingface_hub import snapshot_download model_path = snapshot_download("DRTR-J/whisper-large-v3-turbo-coreml-fp16")Point your Core ML integration (Swift, Rust, Tauri, etc.) at
DecoderWithCache.mlpackageto achieve the advertised RTF ≈ 0.024 on Apple Silicon.The experimental
DecoderStateful.mlpackageis included for completeness but still fails ANE planning (Core ML error -14); keep it disabled in production.
For full background and performance tables, consult whisper-large-v3-turbo-coreml-fp16/MODEL_CARD.md.
License
- Base weights: OpenAI Whisper license
- Packaging and auxiliary assets: MIT