paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/findver-explainable-claim-verification-over
|
FinDVer: Explainable Claim Verification over Long and Hybrid-Content Financial Documents
|
2411.05764
|
https://arxiv.org/abs/2411.05764v1
|
https://arxiv.org/pdf/2411.05764v1.pdf
|
https://github.com/yilunzhao/FinDVer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/optimal-high-frequency-trading-with-limit-and
|
Optimal High Frequency Trading with limit and market orders
|
1106.5040
|
https://arxiv.org/abs/1106.5040v1
|
https://arxiv.org/pdf/1106.5040v1.pdf
|
https://github.com/lcsrodriguez/optimalHFT
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/transferable-selective-virtual-sensing-active
|
Transferable Selective Virtual Sensing Active Noise Control Technique Based on Metric Learning
|
2409.05470
|
https://arxiv.org/abs/2409.05470v1
|
https://arxiv.org/pdf/2409.05470v1.pdf
|
https://github.com/Wang-Boxiang/Transferable-Selective-Virtual-Sensing-Active-Noise-Control
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/gx2mol-de-novo-generation-of-hit-like
|
De Novo Generation of Hit-like Molecules from Gene Expression Profiles via Deep Learning
|
2412.19422
|
https://arxiv.org/abs/2412.19422v2
|
https://arxiv.org/pdf/2412.19422v2.pdf
|
https://github.com/naruto7283/gx2mol
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/generalized-uncertainty-based-evidential
|
Generalized Uncertainty-Based Evidential Fusion with Hybrid Multi-Head Attention for Weak-Supervised Temporal Action Localization
|
2412.19418
|
https://arxiv.org/abs/2412.19418v1
|
https://arxiv.org/pdf/2412.19418v1.pdf
|
https://github.com/heyuanpengpku/guef
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/recurrent-neural-networks-with-top-k-gains
|
Recurrent Neural Networks with Top-k Gains for Session-based Recommendations
|
1706.03847
|
http://arxiv.org/abs/1706.03847v3
|
http://arxiv.org/pdf/1706.03847v3.pdf
|
https://github.com/otto-de/recsys-dataset
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/an-open-dataset-for-oracle-bone-script
|
An open dataset for oracle bone script recognition and decipherment
|
2401.15365
|
https://arxiv.org/abs/2401.15365v4
|
https://arxiv.org/pdf/2401.15365v4.pdf
|
https://github.com/yuliang-liu/open-oracle
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/pareto-front-approximation-for-multi
|
Pareto Front Approximation for Multi-Objective Session-Based Recommender Systems
|
2407.16828
|
https://arxiv.org/abs/2407.16828v3
|
https://arxiv.org/pdf/2407.16828v3.pdf
|
https://github.com/otto-de/recsys-dataset
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/180809781
|
Self-Attentive Sequential Recommendation
|
1808.09781
|
http://arxiv.org/abs/1808.09781v1
|
http://arxiv.org/pdf/1808.09781v1.pdf
|
https://github.com/otto-de/recsys-dataset
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/question-attentive-review-level-for-neural
|
Question-Attentive Review-Level for Neural Rating Regression
| null |
https://dl.acm.org/doi/10.1145/3699516
|
https://dl.acm.org/doi/pdf/10.1145/3699516
|
https://github.com/PreferredAI/QuestER
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/floating-point-neural-networks-are-provably
|
Floating-Point Neural Networks Are Provably Robust Universal Approximators
|
2506.16065
|
https://arxiv.org/abs/2506.16065v1
|
https://arxiv.org/pdf/2506.16065v1.pdf
|
https://github.com/yechanp/floating-point-iua-theorem
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/imageref-vl-enabling-contextual-image
|
ImageRef-VL: Enabling Contextual Image Referencing in Vision-Language Models
|
2501.12418
|
https://arxiv.org/abs/2501.12418v1
|
https://arxiv.org/pdf/2501.12418v1.pdf
|
https://github.com/bytedance/imageref-vl
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/solving-high-dimensional-pdes-with-latent
|
Solving High-Dimensional PDEs with Latent Spectral Models
|
2301.12664
|
https://arxiv.org/abs/2301.12664v3
|
https://arxiv.org/pdf/2301.12664v3.pdf
|
https://github.com/thuml/Latent-Spectral-Models
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/stmdnet-a-lightweight-directional-framework
|
STMDNet: A Lightweight Directional Framework for Motion Pattern Recognition of Tiny Targets
|
2501.13054
|
https://arxiv.org/abs/2501.13054v1
|
https://arxiv.org/pdf/2501.13054v1.pdf
|
https://github.com/mingshuoxu/stmdnet
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/vpi-bench-visual-prompt-injection-attacks-for
|
VPI-Bench: Visual Prompt Injection Attacks for Computer-Use Agents
|
2506.02456
|
https://arxiv.org/abs/2506.02456v1
|
https://arxiv.org/pdf/2506.02456v1.pdf
|
https://github.com/cua-framework/agents
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/learning-partonomic-3d-reconstruction-from
|
Learning Partonomic 3D Reconstruction from Image Collections
| null |
http://openaccess.thecvf.com//content/CVPR2025/html/Ruan_Learning_Partonomic_3D_Reconstruction_from_Image_Collections_CVPR_2025_paper.html
|
http://openaccess.thecvf.com//content/CVPR2025/papers/Ruan_Learning_Partonomic_3D_Reconstruction_from_Image_Collections_CVPR_2025_paper.pdf
|
https://github.com/xiaoqianruan1/partonomic_reconstruction
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/stress-testing-machine-generated-text
|
Stress-testing Machine Generated Text Detection: Shifting Language Models Writing Style to Fool Detectors
|
2505.24523
|
https://arxiv.org/abs/2505.24523v1
|
https://arxiv.org/pdf/2505.24523v1.pdf
|
https://github.com/gpucce/control_mgt
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/videocad-a-large-scale-video-dataset-for
|
VideoCAD: A Large-Scale Video Dataset for Learning UI Interactions and 3D Reasoning from CAD Software
|
2505.24838
|
https://arxiv.org/abs/2505.24838v1
|
https://arxiv.org/pdf/2505.24838v1.pdf
|
https://github.com/brandonman123/videocad
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/specklenn-a-unified-embedding-for-real-time
|
SpeckleNN: A unified embedding for real-time speckle pattern classification in X-ray single-particle imaging with limited labeled examples
|
2302.06895
|
https://arxiv.org/abs/2302.06895v1
|
https://arxiv.org/pdf/2302.06895v1.pdf
|
https://github.com/carbonscott/speckleNN
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/tracing-knowledge-instead-of-paterns-stable
|
Tracing Knowledge Instead of Paterns: Stable Knowledge Tracing with Diagnostic Transformer
| null |
https://dl.acm.org/doi/abs/10.1145/3543507.3583255
|
https://dl.acm.org/doi/abs/10.1145/3543507.3583255
|
https://github.com/yxonic/DTransformer
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/what-limits-llm-based-human-simulation-llms
|
What Limits LLM-based Human Simulation: LLMs or Our Design?
|
2501.08579
|
https://arxiv.org/abs/2501.08579v1
|
https://arxiv.org/pdf/2501.08579v1.pdf
|
https://github.com/persdre/llm-human-simulation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/certified-robustness-under-bounded
|
Certified Robustness Under Bounded Levenshtein Distance
|
2501.13676
|
https://arxiv.org/abs/2501.13676v1
|
https://arxiv.org/pdf/2501.13676v1.pdf
|
https://github.com/lions-epfl/lipslev
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-to-explain-recommendations
|
On the Relationship between Explanation and Recommendation: Learning to Rank Explanations for Improved Performance
|
2102.00627
|
https://arxiv.org/abs/2102.00627v4
|
https://arxiv.org/pdf/2102.00627v4.pdf
|
https://github.com/lileipisces/bper
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/attractor-based-coevolving-dot-product-random
|
Attractor-Based Coevolving Dot Product Random Graph Model
|
2505.02675
|
https://arxiv.org/abs/2505.02675v1
|
https://arxiv.org/pdf/2505.02675v1.pdf
|
https://github.com/Shiwen-Yang/ABCDPRGM
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/onlyflow-optical-flow-based-motion
|
OnlyFlow: Optical Flow based Motion Conditioning for Video Diffusion Models
|
2411.10501
|
https://arxiv.org/abs/2411.10501v1
|
https://arxiv.org/pdf/2411.10501v1.pdf
|
https://github.com/obvious-research/OnlyFlow
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/token-weighting-for-long-range-language
|
Token Weighting for Long-Range Language Modeling
|
2503.09202
|
https://arxiv.org/abs/2503.09202v1
|
https://arxiv.org/pdf/2503.09202v1.pdf
|
https://github.com/ukplab/naacl2025-token-weighting
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/interpretable-rna-foundation-model-from
|
Interpretable RNA Foundation Model from Unannotated Data for Highly Accurate RNA Structure and Function Predictions
|
2204.00300
|
https://arxiv.org/abs/2204.00300v5
|
https://arxiv.org/pdf/2204.00300v5.pdf
|
https://github.com/lulab/OligoFormer
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/chatbot-arena-an-open-platform-for-evaluating
|
Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference
|
2403.04132
|
https://arxiv.org/abs/2403.04132v1
|
https://arxiv.org/pdf/2403.04132v1.pdf
|
https://github.com/aken12/LLM-based-QE-fails
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/towards-effective-and-efficient-context-aware
|
Towards Effective and Efficient Context-aware Nucleus Detection in Histopathology Whole Slide Images
|
2503.05678
|
https://arxiv.org/abs/2503.05678v1
|
https://arxiv.org/pdf/2503.05678v1.pdf
|
https://github.com/windygoo/pathcontext
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/misspelling-oblivious-word-embeddings
|
Misspelling Oblivious Word Embeddings
|
1905.09755
|
https://arxiv.org/abs/1905.09755v1
|
https://arxiv.org/pdf/1905.09755v1.pdf
|
https://github.com/dleemiller/string-noise
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/sparsity-promoting-reachability-analysis-and
|
Sparsity-Promoting Reachability Analysis and Optimization of Constrained Zonotopes
|
2504.03885
|
https://arxiv.org/abs/2504.03885v1
|
https://arxiv.org/pdf/2504.03885v1.pdf
|
https://github.com/psu-PAC-Lab/ZonoOpt
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/rejshand-efficient-real-time-hand-pose
|
ReJSHand: Efficient Real-Time Hand Pose Estimation and Mesh Reconstruction Using Refined Joint and Skeleton Features
|
2503.05995
|
https://arxiv.org/abs/2503.05995v1
|
https://arxiv.org/pdf/2503.05995v1.pdf
|
https://github.com/daishipeng/rejshand
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/hierdamap-towards-universal-domain-adaptive
|
HierDAMap: Towards Universal Domain Adaptive BEV Mapping via Hierarchical Perspective Priors
|
2503.06821
|
https://arxiv.org/abs/2503.06821v1
|
https://arxiv.org/pdf/2503.06821v1.pdf
|
https://github.com/lynn-yu/hierdamap
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/bi-level-optimization-for-parameter
|
Bi-Level optimization for parameter estimation of differential equations using interpolation
|
2506.00720
|
https://arxiv.org/abs/2506.00720v1
|
https://arxiv.org/pdf/2506.00720v1.pdf
|
https://github.com/siddharth-prabhu/bilevelparameterestimation
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/learning-to-localize-leakage-of-cryptographic
|
Learning to Localize Leakage of Cryptographic Sensitive Variables
|
2503.07464
|
https://arxiv.org/abs/2503.07464v1
|
https://arxiv.org/pdf/2503.07464v1.pdf
|
https://github.com/jimgammell/learning_to_localize_leakage
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/drawing-a-map-of-elections
|
Drawing a Map of Elections
|
2504.03809
|
https://arxiv.org/abs/2504.03809v2
|
https://arxiv.org/pdf/2504.03809v2.pdf
|
https://github.com/Project-PRAGMA/Journal---Drawing-a-Map-of-Elections
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/an-adaptively-inexact-method-for-bilevel
|
An Adaptively Inexact Method for Bilevel Learning Using Primal-Dual Style Differentiation
|
2412.06436
|
https://arxiv.org/abs/2412.06436v3
|
https://arxiv.org/pdf/2412.06436v3.pdf
|
https://github.com/MohammadSadeghSalehi/Analytical-Deep-Priors
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/a-simulation-study-to-compare-210pb-dating
|
A simulation study to compare 210Pb dating data analyses
|
2012.06819
|
https://arxiv.org/abs/2012.06819v1
|
https://arxiv.org/pdf/2012.06819v1.pdf
|
https://github.com/maquinolopez/Paper_Simulations
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/good-colour-maps-how-to-design-them
|
Good Colour Maps: How to Design Them
|
1509.03700
|
http://arxiv.org/abs/1509.03700v1
|
http://arxiv.org/pdf/1509.03700v1.pdf
|
https://github.com/holoviz/colorcet
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/clustering-the-nearest-neighbor-gaussian
|
Clustering the Nearest Neighbor Gaussian Process
|
2501.10656
|
https://arxiv.org/abs/2501.10656v1
|
https://arxiv.org/pdf/2501.10656v1.pdf
|
https://github.com/ashlynn-c/cnngp
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/ceresa-cycles-of-x-0-n
|
Ceresa Cycles of $X_{0}(N)$
|
2501.14060
|
https://arxiv.org/abs/2501.14060v2
|
https://arxiv.org/pdf/2501.14060v2.pdf
|
https://github.com/jameswrawson/modularceresa
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/event-based-motion-segmentation-by-cascaded
|
Event-based Motion Segmentation by Cascaded Two-Level Multi-Model Fitting
|
2111.03483
|
https://arxiv.org/abs/2111.03483v1
|
https://arxiv.org/pdf/2111.03483v1.pdf
|
https://github.com/hkust-aerial-robotics/emsgc
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/certified-knowledge-compilation-with
|
Certified Knowledge Compilation with Application to Formally Verified Model Counting
|
2501.12906
|
https://arxiv.org/abs/2501.12906v1
|
https://arxiv.org/pdf/2501.12906v1.pdf
|
https://github.com/rebryant/cpog
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/safe-interval-randomized-path-planing-for
|
Safe Interval Randomized Path Planning For Manipulators
|
2412.19567
|
https://arxiv.org/abs/2412.19567v2
|
https://arxiv.org/pdf/2412.19567v2.pdf
|
https://github.com/pathplanning/manipulationplanning-si-rrt
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/langevin-soft-actor-critic-efficient
|
Langevin Soft Actor-Critic: Efficient Exploration through Uncertainty-Driven Critic Learning
|
2501.17827
|
https://arxiv.org/abs/2501.17827v1
|
https://arxiv.org/pdf/2501.17827v1.pdf
|
https://github.com/hmishfaq/lsac
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/2ssp-a-two-stage-framework-for-structured
|
2SSP: A Two-Stage Framework for Structured Pruning of LLMs
|
2501.17771
|
https://arxiv.org/abs/2501.17771v1
|
https://arxiv.org/pdf/2501.17771v1.pdf
|
https://github.com/fabriziosandri/2ssp
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/recovery-policies-for-safe-exploration-of
|
Recovery Policies for Safe Exploration of Lunar Permanently Shadowed Regions by a Solar-Powered Rover
|
2307.16786
|
https://arxiv.org/abs/2307.16786v2
|
https://arxiv.org/pdf/2307.16786v2.pdf
|
https://github.com/utiasSTARS/gplanetary-nav
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/estimating-adult-death-rates-from-sibling
|
Estimating adult death rates from sibling histories: A network approach
|
1906.12000
|
http://arxiv.org/abs/1906.12000v1
|
http://arxiv.org/pdf/1906.12000v1.pdf
|
https://github.com/dfeehan/siblingsurvival
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/sk1123344/U-2-NET-and-U-NET
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/u-2-net-going-deeper-with-nested-u-structure
|
U$^2$-Net: Going Deeper with Nested U-Structure for Salient Object Detection
|
2005.09007
|
https://arxiv.org/abs/2005.09007v3
|
https://arxiv.org/pdf/2005.09007v3.pdf
|
https://github.com/sk1123344/U-2-NET-and-U-NET
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/large-scale-cross-modality-pretrained-model
|
Translating Electrocardiograms to Cardiac Magnetic Resonance Imaging Useful for Cardiac Assessment and Disease Screening: A Multi-Center Study AI for ECG to CMR Translation Study
|
2411.13602
|
https://arxiv.org/abs/2411.13602v2
|
https://arxiv.org/pdf/2411.13602v2.pdf
|
https://github.com/yukui-1999/ecg-cmr
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/motion-x-a-large-scale-multimodal-3d-whole
|
Motion-X++: A Large-Scale Multimodal 3D Whole-body Human Motion Dataset
|
2501.05098
|
https://arxiv.org/abs/2501.05098v1
|
https://arxiv.org/pdf/2501.05098v1.pdf
|
https://github.com/idea-research/motion-x
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sample-based-krylov-quantum-diagonalization
|
Quantum-Centric Algorithm for Sample-Based Krylov Diagonalization
|
2501.09702
|
https://arxiv.org/abs/2501.09702v2
|
https://arxiv.org/pdf/2501.09702v2.pdf
|
https://github.com/qiskit/qiskit-addon-sqd
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/uniocc-a-unified-benchmark-for-occupancy
|
UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving
|
2503.24381
|
https://arxiv.org/abs/2503.24381v1
|
https://arxiv.org/pdf/2503.24381v1.pdf
|
https://github.com/tasl-lab/uniocc
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/schemaagent-a-multi-agents-framework-for
|
SchemaAgent: A Multi-Agents Framework for Generating Relational Database Schema
|
2503.23886
|
https://arxiv.org/abs/2503.23886v1
|
https://arxiv.org/pdf/2503.23886v1.pdf
|
https://github.com/hnugraph/llm4dbdesign
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/quantum-computing-of-reacting-flows-via
|
Quantum computing of reacting flows via Hamiltonian simulation
|
2312.07893
|
https://arxiv.org/abs/2312.07893v3
|
https://arxiv.org/pdf/2312.07893v3.pdf
|
https://github.com/YYgroup/qcReactingFlows
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/focusedad-character-centric-movie-audio
|
FocusedAD: Character-centric Movie Audio Description
|
2504.12157
|
https://arxiv.org/abs/2504.12157v3
|
https://arxiv.org/pdf/2504.12157v3.pdf
|
https://github.com/thorin215/focusedad
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/mass-moerging-through-adaptive-subspace
|
MASS: MoErging through Adaptive Subspace Selection
|
2504.05342
|
https://arxiv.org/abs/2504.05342v1
|
https://arxiv.org/pdf/2504.05342v1.pdf
|
https://github.com/crisostomi/mass
| false
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/exponential-quantum-speedup-for-simulating
|
Exponential Quantum Speedup for Simulating Classical Lattice Dynamics
|
2504.05453
|
https://arxiv.org/abs/2504.05453v1
|
https://arxiv.org/pdf/2504.05453v1.pdf
|
https://github.com/xxl12/quantum-algorithms-lattice-dynamics
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/predicting-cascade-failures-in-interdependent
|
Predicting Cascade Failures in Interdependent Urban Infrastructure Networks
|
2503.02890
|
https://arxiv.org/abs/2503.02890v1
|
https://arxiv.org/pdf/2503.02890v1.pdf
|
https://github.com/tsinghua-fib-lab/icube
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/synthesizing-permissive-winning-strategy
|
Synthesizing Permissive Winning Strategy Templates for Parity Games
|
2305.14026
|
https://arxiv.org/abs/2305.14026v2
|
https://arxiv.org/pdf/2305.14026v2.pdf
|
https://github.com/satya2009rta/pestel
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/seaformer-squeeze-enhanced-axial-transformer
|
SeaFormer++: Squeeze-enhanced Axial Transformer for Mobile Visual Recognition
|
2301.13156
|
https://arxiv.org/abs/2301.13156v5
|
https://arxiv.org/pdf/2301.13156v5.pdf
|
https://github.com/fudan-zvg/seaformer
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/curvature-tuning-provable-training-free-model
|
Curvature Tuning: Provable Training-free Model Steering From a Single Parameter
|
2502.07783
|
https://arxiv.org/abs/2502.07783v1
|
https://arxiv.org/pdf/2502.07783v1.pdf
|
https://github.com/leon-leyang/curvature-tuning
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/on-the-randomized-horn-problem-and-the
|
On the randomized Horn problem and the surface tension of hives
|
2410.12619
|
https://arxiv.org/abs/2410.12619v3
|
https://arxiv.org/pdf/2410.12619v3.pdf
|
https://github.com/aalok1993/combinatorial-hives
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/less-is-more-one-shot-subgraph-reasoning-on
|
Less is More: One-shot Subgraph Reasoning on Large-scale Knowledge Graphs
|
2403.10231
|
https://arxiv.org/abs/2403.10231v2
|
https://arxiv.org/pdf/2403.10231v2.pdf
|
https://github.com/tmlr-group/one-shot-subgraph
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/template-based-financial-report-generation-in
|
Template-Based Financial Report Generation in Agentic and Decomposed Information Retrieval
|
2504.14233
|
https://arxiv.org/abs/2504.14233v1
|
https://arxiv.org/pdf/2504.14233v1.pdf
|
https://github.com/bryant-nn/template-based-financial-report-generation
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/teach-me-how-to-denoise-a-universal-framework
|
Teach Me How to Denoise: A Universal Framework for Denoising Multi-modal Recommender Systems via Guided Calibration
|
2504.14214
|
https://arxiv.org/abs/2504.14214v1
|
https://arxiv.org/pdf/2504.14214v1.pdf
|
https://github.com/neon-jing/guider
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/deepretrieval-powerful-query-generation-for
|
DeepRetrieval: Hacking Real Search Engines and Retrievers with Large Language Models via Reinforcement Learning
|
2503.00223
|
https://arxiv.org/abs/2503.00223v3
|
https://arxiv.org/pdf/2503.00223v3.pdf
|
https://github.com/pat-jj/deepretrieval
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/zooming-in-on-fakes-a-novel-dataset-for
|
Zooming In on Fakes: A Novel Dataset for Localized AI-Generated Image Detection with Forgery Amplification Approach
|
2504.11922
|
https://arxiv.org/abs/2504.11922v2
|
https://arxiv.org/pdf/2504.11922v2.pdf
|
https://github.com/clpbc/br-gen
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/distilling-heterogeneous-treatment-effects
|
Distilling heterogeneous treatment effects: Stable subgroup estimation in causal inference
|
2502.07275
|
https://arxiv.org/abs/2502.07275v2
|
https://arxiv.org/pdf/2502.07275v2.pdf
|
https://github.com/tiffanymtang/causalDT
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/window-token-concatenation-for-efficient
|
Window Token Concatenation for Efficient Visual Large Language Models
|
2504.04024
|
https://arxiv.org/abs/2504.04024v1
|
https://arxiv.org/pdf/2504.04024v1.pdf
|
https://github.com/jackyfl/wico
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/instability-analysis-of-massive-static
|
Instability Analysis of Massive Static Phantom Wormholes via the Spectral Method
|
2502.05486
|
https://arxiv.org/abs/2502.05486v1
|
https://arxiv.org/pdf/2502.05486v1.pdf
|
https://github.com/dutykh/EllisBronnikov
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/leveraging-allophony-in-self-supervised
|
Leveraging Allophony in Self-Supervised Speech Models for Atypical Pronunciation Assessment
|
2502.07029
|
https://arxiv.org/abs/2502.07029v2
|
https://arxiv.org/pdf/2502.07029v2.pdf
|
https://github.com/juice500ml/acoustic-units-for-ood
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/progressive-confident-masking-attention
|
Progressive Confident Masking Attention Network for Audio-Visual Segmentation
|
2406.02345
|
https://arxiv.org/abs/2406.02345v2
|
https://arxiv.org/pdf/2406.02345v2.pdf
|
https://github.com/prettyplate/pcmanet
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/fluorescence-detected-two-dimensional
|
Fluorescence-detected two-dimensional electronic spectroscopy of a single molecule
|
2407.09200
|
https://arxiv.org/abs/2407.09200v1
|
https://arxiv.org/pdf/2407.09200v1.pdf
|
https://github.com/Lippitz-Lab/PLL-on-FPGA
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/detection-friendly-nonuniformity-correction-a
|
Detection-Friendly Nonuniformity Correction: A Union Framework for Infrared UAVTarget Detection
|
2504.04012
|
https://arxiv.org/abs/2504.04012v1
|
https://arxiv.org/pdf/2504.04012v1.pdf
|
https://github.com/IVPLaboratory/UniCD
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/cross-modal-and-uncertainty-aware
|
Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding
|
2503.16707
|
https://arxiv.org/abs/2503.16707v2
|
https://arxiv.org/pdf/2503.16707v2.pdf
|
https://github.com/tyroneli/cua_o3d
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/litecua-computer-as-mcp-server-for-computer
|
LiteCUA: Computer as MCP Server for Computer-Use Agent on AIOS
|
2505.18829
|
https://arxiv.org/abs/2505.18829v1
|
https://arxiv.org/pdf/2505.18829v1.pdf
|
https://github.com/agiresearch/cerebrum
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/zero-execution-retrieval-augmented
|
Zero-Execution Retrieval-Augmented Configuration Tuning of Spark Applications
|
2503.03826
|
https://arxiv.org/abs/2503.03826v1
|
https://arxiv.org/pdf/2503.03826v1.pdf
|
https://github.com/layer6ai-labs/spark-retrieval-tuning
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/lightweight-and-direct-document-relevance
|
Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval
|
2504.05181
|
https://arxiv.org/abs/2504.05181v2
|
https://arxiv.org/pdf/2504.05181v2.pdf
|
https://github.com/kidist-amde/ddro
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/direct-preference-optimization-your-language
|
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
|
2305.18290
|
https://arxiv.org/abs/2305.18290v3
|
https://arxiv.org/pdf/2305.18290v3.pdf
|
https://github.com/kidist-amde/ddro
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/190600121
|
Graph WaveNet for Deep Spatial-Temporal Graph Modeling
|
1906.00121
|
https://arxiv.org/abs/1906.00121v1
|
https://arxiv.org/pdf/1906.00121v1.pdf
|
https://github.com/razvanc92/enhancenet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/diffusion-convolutional-recurrent-neural
|
Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting
|
1707.01926
|
http://arxiv.org/abs/1707.01926v3
|
http://arxiv.org/pdf/1707.01926v3.pdf
|
https://github.com/razvanc92/enhancenet
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fecfusion-infrared-and-visible-image-fusion
|
FECFusion: Infrared and visible image fusion network based on fast edge convolution
| null |
https://www.aimspress.com/article/doi/10.3934/mbe.2023717
|
https://www.aimspress.com/article/doi/10.3934/mbe.2023717
|
https://github.com/qingchen2333/FECFusion
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/rs-del-edit-distance-robustness-certificates-1
|
RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion
|
2302.01757
|
https://arxiv.org/abs/2302.01757v3
|
https://arxiv.org/pdf/2302.01757v3.pdf
|
https://github.com/lions-epfl/lipslev
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/unveiling-implicit-table-knowledge-with
|
Unveiling Implicit Table Knowledge with Question-Then-Pinpoint Reasoner for Insightful Table Summarization
|
2406.12269
|
https://arxiv.org/abs/2406.12269v2
|
https://arxiv.org/pdf/2406.12269v2.pdf
|
https://github.com/tommyezreal/qtp
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/jvmc-versatile-and-performant-variational
|
jVMC: Versatile and performant variational Monte Carlo leveraging automated differentiation and GPU acceleration
|
2108.03409
|
https://arxiv.org/abs/2108.03409v2
|
https://arxiv.org/pdf/2108.03409v2.pdf
|
https://github.com/markusschmitt/vmc_jax
| true
| true
| true
|
jax
|
https://paperswithcode.com/paper/event-based-star-tracking-via-multiresolution
|
Event-based Star Tracking via Multiresolution Progressive Hough Transforms
|
1906.07866
|
https://arxiv.org/abs/1906.07866v2
|
https://arxiv.org/pdf/1906.07866v2.pdf
|
https://github.com/uzh-rpg/event-based_vision_resources
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/once-bitten-twice-shy-a-modeling-framework
|
Once bitten, twice shy: A modeling framework for incorporating heterogeneous mosquito biting into transmission models
|
2503.10585
|
https://arxiv.org/abs/2503.10585v1
|
https://arxiv.org/pdf/2503.10585v1.pdf
|
https://github.com/kydahl/mosquito-bite-process-modeling
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/featsharp-your-vision-model-features-sharper
|
FeatSharp: Your Vision Model Features, Sharper
|
2502.16025
|
https://arxiv.org/abs/2502.16025v1
|
https://arxiv.org/pdf/2502.16025v1.pdf
|
https://github.com/nvlabs/radio
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/refactorbench-evaluating-stateful-reasoning
|
RefactorBench: Evaluating Stateful Reasoning in Language Agents Through Code
|
2503.07832
|
https://arxiv.org/abs/2503.07832v1
|
https://arxiv.org/pdf/2503.07832v1.pdf
|
https://github.com/microsoft/RefactorBench
| true
| false
| false
|
none
|
https://paperswithcode.com/paper/detecting-hallucinations-in-large-language-1
|
Detecting hallucinations in large language models using semantic entropy
| null |
https://www.nature.com/articles/s41586-024-07421-0
|
https://www.nature.com/articles/s41586-024-07421-0.pdf
|
https://github.com/jlko/semantic_uncertainty
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/movable-antenna-enabled-ris-aided-integrated
|
Movable Antenna-enabled RIS-aided Integrated Sensing and Communication
|
2407.03228
|
https://arxiv.org/abs/2407.03228v2
|
https://arxiv.org/pdf/2407.03228v2.pdf
|
https://github.com/OnePieceofCakeforYou/Movable-antenna-enabled-RIS-aided-integrated-sensing-and-communication
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/efficient-alignment-of-unconditioned-action
|
Efficient Alignment of Unconditioned Action Prior for Language-conditioned Pick and Place in Clutter
|
2503.09423
|
https://arxiv.org/abs/2503.09423v2
|
https://arxiv.org/pdf/2503.09423v2.pdf
|
https://github.com/H-Freax/ThinkGrasp
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/free-form-language-based-robotic-reasoning
|
Free-form language-based robotic reasoning and grasping
|
2503.13082
|
https://arxiv.org/abs/2503.13082v1
|
https://arxiv.org/pdf/2503.13082v1.pdf
|
https://github.com/H-Freax/ThinkGrasp
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/affordgrasp-in-context-affordance-reasoning
|
AffordGrasp: In-Context Affordance Reasoning for Open-Vocabulary Task-Oriented Grasping in Clutter
|
2503.00778
|
https://arxiv.org/abs/2503.00778v1
|
https://arxiv.org/pdf/2503.00778v1.pdf
|
https://github.com/H-Freax/ThinkGrasp
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/tinyvla-towards-fast-data-efficient-vision
|
TinyVLA: Towards Fast, Data-Efficient Vision-Language-Action Models for Robotic Manipulation
|
2409.12514
|
https://arxiv.org/abs/2409.12514v5
|
https://arxiv.org/pdf/2409.12514v5.pdf
|
https://github.com/liyaxuanliyaxuan/TinyVLA
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/neuqi-near-optimal-uniform-quantization
|
NeUQI: Near-Optimal Uniform Quantization Parameter Initialization
|
2505.17595
|
https://arxiv.org/abs/2505.17595v2
|
https://arxiv.org/pdf/2505.17595v2.pdf
|
https://github.com/efsotr/NeUQI
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/rwkv-x-a-linear-complexity-hybrid-language
|
RWKV-X: A Linear Complexity Hybrid Language Model
|
2504.21463
|
https://arxiv.org/abs/2504.21463v2
|
https://arxiv.org/pdf/2504.21463v2.pdf
|
https://github.com/howard-hou/rwkv-x
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/mmhcl-multi-modal-hypergraph-contrastive
|
MMHCL: Multi-Modal Hypergraph Contrastive Learning for Recommendation
|
2504.16576
|
https://arxiv.org/abs/2504.16576v1
|
https://arxiv.org/pdf/2504.16576v1.pdf
|
https://github.com/xu107/mmhcl
| true
| true
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.