paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
|---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
Deep Residual Learning for Image Recognition
|
1512.03385
|
http://arxiv.org/abs/1512.03385v1
|
http://arxiv.org/pdf/1512.03385v1.pdf
|
https://github.com/CryptoSalamander/pytorch_paper_implementation
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/dynamic-modality-interaction-modeling-for
|
Dynamic Modality Interaction Modeling for Image-Text Retrieval
| null |
https://dl.acm.org/doi/abs/10.1145/3404835.3462829#d65226017e1
|
https://dl.acm.org/doi/pdf/10.1145/3404835.3462829
|
https://github.com/LgQu/DIME
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/an-efficient-convolutional-neural-network-for
|
An Efficient Convolutional Neural Network for Coronary Heart Disease Prediction
|
1909.00489
|
https://arxiv.org/abs/1909.00489v2
|
https://arxiv.org/pdf/1909.00489v2.pdf
|
https://github.com/anik-UCB/CNN-CardioPrediction
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/number-theoretic-transform-architecture
|
Number Theoretic Transform Architecture suitable to Lattice-based Fully-Homomorphic Encryption
| null |
https://ieeexplore.ieee.org/document/9516650
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9516650
|
https://github.com/rogpld/fhentt
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/an-infra-structure-for-performance-estimation
|
An Infra-Structure for Performance Estimation and Experimental Comparison of Predictive Models in R
|
1412.0436
|
http://arxiv.org/abs/1412.0436v4
|
http://arxiv.org/pdf/1412.0436v4.pdf
|
https://github.com/ltorgo/performanceEstimation
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/thieves-on-sesame-street-model-extraction-of
|
Thieves on Sesame Street! Model Extraction of BERT-based APIs
|
1910.12366
|
https://arxiv.org/abs/1910.12366v3
|
https://arxiv.org/pdf/1910.12366v3.pdf
|
https://github.com/google-research/language/tree/master/language/bert_extraction
| true
| false
| true
|
tf
|
https://paperswithcode.com/paper/annotating-and-characterizing-clinical
|
Annotating and Characterizing Clinical Sentences with Explicit Why-QA Cues
| null |
https://aclanthology.org/W19-1913
|
https://aclanthology.org/W19-1913.pdf
|
https://github.com/Jung-wei/ClinicalWhyQA
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/gradual-session-types
|
Gradual Session Types
|
1809.05649
|
http://arxiv.org/abs/1809.05649v1
|
http://arxiv.org/pdf/1809.05649v1.pdf
|
https://github.com/tdyydt/ggv-checker
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/the-blackbird-dataset-a-large-scale-dataset
|
The Blackbird Dataset: A large-scale dataset for UAV perception in aggressive flight
|
1810.01987
|
http://arxiv.org/abs/1810.01987v1
|
http://arxiv.org/pdf/1810.01987v1.pdf
|
https://github.com/AgileDrones/Blackbird-Dataset
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/the-backpropagation-algorithm-implemented-on
|
The Backpropagation Algorithm Implemented on Spiking Neuromorphic Hardware
|
2106.07030
|
https://arxiv.org/abs/2106.07030v2
|
https://arxiv.org/pdf/2106.07030v2.pdf
|
https://github.com/lanl/spikingBackprop
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/character-preserving-coherent-story
|
Character-Preserving Coherent Story Visualization
| null |
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/2639_ECCV_2020_paper.php
|
https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123620018.pdf
|
https://github.com/basiclab/CPCStoryVisualization-Pytorch
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/improving-retrieval-based-question-answering
|
Improving Retrieval-Based Question Answering with Deep Inference Models
|
1812.02971
|
https://arxiv.org/abs/1812.02971v2
|
https://arxiv.org/pdf/1812.02971v2.pdf
|
https://github.com/SebiSebi/AI2-Reasoning-Challenge-ARC
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/transfer-learning-for-music-classification
|
Transfer learning for music classification and regression tasks
|
1703.09179
|
http://arxiv.org/abs/1703.09179v4
|
http://arxiv.org/pdf/1703.09179v4.pdf
|
https://github.com/DaCreasy/DLFinal
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/towards-a-relation-extraction-framework-for
|
Towards a relation extraction framework for cyber-security concepts
|
1504.04317
|
http://arxiv.org/abs/1504.04317v1
|
http://arxiv.org/pdf/1504.04317v1.pdf
|
https://github.com/ShashSec/SMTI_SA
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/automatic-labeling-for-entity-extraction-in
|
Automatic Labeling for Entity Extraction in Cyber Security
|
1308.4941
|
http://arxiv.org/abs/1308.4941v3
|
http://arxiv.org/pdf/1308.4941v3.pdf
|
https://github.com/ShashSec/SMTI_SA
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/sensitivity-analysis-on-chaotic-dynamical
|
Sensitivity analysis on chaotic dynamical system by Non-Intrusive Least Square Shadowing (NILSS)
|
1611.00880
|
http://arxiv.org/abs/1611.00880v8
|
http://arxiv.org/pdf/1611.00880v8.pdf
|
https://github.com/UriAceves/SiScSeminar
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/bayesian-probabilistic-numerical-methods-in
|
Bayesian Probabilistic Numerical Methods in Time-Dependent State Estimation for Industrial Hydrocyclone Equipment
|
1707.06107
|
http://arxiv.org/abs/1707.06107v2
|
http://arxiv.org/pdf/1707.06107v2.pdf
|
https://github.com/jcockayne/hydrocyclone_code
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/searching-for-activation-functions
|
Searching for Activation Functions
|
1710.05941
|
http://arxiv.org/abs/1710.05941v2
|
http://arxiv.org/pdf/1710.05941v2.pdf
|
https://github.com/Neoanarika/Searching-for-activation-functions
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/w-talc-weakly-supervised-temporal-activity
|
W-TALC: Weakly-supervised Temporal Activity Localization and Classification
|
1807.10418
|
http://arxiv.org/abs/1807.10418v3
|
http://arxiv.org/pdf/1807.10418v3.pdf
|
https://github.com/sujoyp/wtalc-pytorch
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/correcting-contradictions
|
Correcting Contradictions
| null |
https://aclanthology.org/W17-7205
|
https://aclanthology.org/W17-7205.pdf
|
https://github.com/kkalouli/SICK-processing
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/learning-from-scale-invariant-examples-for
|
Learning from Scale-Invariant Examples for Domain Adaptation in Semantic Segmentation
|
2007.14449
|
https://arxiv.org/abs/2007.14449v1
|
https://arxiv.org/pdf/2007.14449v1.pdf
|
https://github.com/MNaseerSubhani/LSE
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pseudoedgenet-nuclei-segmentation-only-with
|
PseudoEdgeNet: Nuclei Segmentation only with Point Annotations
|
1906.02924
|
https://arxiv.org/abs/1906.02924v2
|
https://arxiv.org/pdf/1906.02924v2.pdf
|
https://github.com/CJLee94/Point-Supervised-Segmentation
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/teaching-machines-to-read-and-comprehend
|
Teaching Machines to Read and Comprehend
|
1506.03340
|
http://arxiv.org/abs/1506.03340v3
|
http://arxiv.org/pdf/1506.03340v3.pdf
|
https://github.com/thinkwee/DPP_CNN_Summarization
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/exploring-recombination-for-efficient
|
Exploring Recombination for Efficient Decoding of Neural Machine Translation
|
1808.08482
|
http://arxiv.org/abs/1808.08482v2
|
http://arxiv.org/pdf/1808.08482v2.pdf
|
https://github.com/zzsfornlp/znmt-merge
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/where-are-the-blobs-counting-by-localization
|
Where are the Blobs: Counting by Localization with Point Supervision
|
1807.09856
|
http://arxiv.org/abs/1807.09856v1
|
http://arxiv.org/pdf/1807.09856v1.pdf
|
https://github.com/CJLee94/Point-Supervised-Segmentation
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/backtranslation-feedback-improves-user
|
Backtranslation Feedback Improves User Confidence in MT, Not Quality
|
2104.05688
|
https://arxiv.org/abs/2104.05688v1
|
https://arxiv.org/pdf/2104.05688v1.pdf
|
https://github.com/zouharvi/ptakopet
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/learning-the-kernel-matrix-via-predictive-low
|
Learning the kernel matrix via predictive low-rank approximations
|
1601.04366
|
http://arxiv.org/abs/1601.04366v2
|
http://arxiv.org/pdf/1601.04366v2.pdf
|
https://github.com/mstrazar/mklaren
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/learning-a-dilated-residual-network-for-sar
|
Learning a Dilated Residual Network for SAR Image Despeckling
|
1709.02898
|
http://arxiv.org/abs/1709.02898v3
|
http://arxiv.org/pdf/1709.02898v3.pdf
|
https://github.com/qzhang95/SAR-DRN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/sensitive-information-tracking-in-commodity
|
Sensitive Information Tracking in Commodity IoT
|
1802.08307
|
http://arxiv.org/abs/1802.08307v1
|
http://arxiv.org/pdf/1802.08307v1.pdf
|
https://github.com/IoTBench/IoTBench-test-suite
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/learning-to-compose-neural-networks-for
|
Learning to Compose Neural Networks for Question Answering
|
1601.01705
|
http://arxiv.org/abs/1601.01705v4
|
http://arxiv.org/pdf/1601.01705v4.pdf
|
https://github.com/jacobandreas/nmn2
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/mixup-beyond-empirical-risk-minimization
|
mixup: Beyond Empirical Risk Minimization
|
1710.09412
|
http://arxiv.org/abs/1710.09412v2
|
http://arxiv.org/pdf/1710.09412v2.pdf
|
https://github.com/jonnor/datascience-master
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/receipt-refine-coarse-grained-independent
|
RECEIPT: REfine CoarsE-grained IndePendent Tasks for Parallel Tip decomposition of Bipartite Graphs
|
2010.08695
|
http://arxiv.org/abs/2010.08695v1
|
http://arxiv.org/pdf/2010.08695v1.pdf
|
https://github.com/kartiklakhotia/RECEIPT
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/named-entity-recognition-with-bidirectional
|
Named Entity Recognition with Bidirectional LSTM-CNNs
|
1511.08308
|
http://arxiv.org/abs/1511.08308v5
|
http://arxiv.org/pdf/1511.08308v5.pdf
|
https://github.com/osamadev/NER_Using_Spacy
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/discriminating-between-lexico-semantic
|
Discriminating between Lexico-Semantic Relations with the Specialization Tensor Model
| null |
https://aclanthology.org/N18-2029
|
https://aclanthology.org/N18-2029.pdf
|
https://github.com/codogogo/stm
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/compressed-sensing-in-astronomy
|
Compressed Sensing in Astronomy
|
0802.0131
|
http://arxiv.org/abs/0802.0131v1
|
http://arxiv.org/pdf/0802.0131v1.pdf
|
https://github.com/MartKl/CS_image_recovery_demo
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/byel-bootstrap-on-your-emotion-latent
|
BYEL : Bootstrap Your Emotion Latent
|
2207.10003
|
https://arxiv.org/abs/2207.10003v2
|
https://arxiv.org/pdf/2207.10003v2.pdf
|
https://github.com/rhtm02/Bootstrap-Your-Emotion-Latent
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/spectral-normalization-for-generative
|
Spectral Normalization for Generative Adversarial Networks
|
1802.05957
|
http://arxiv.org/abs/1802.05957v1
|
http://arxiv.org/pdf/1802.05957v1.pdf
|
https://github.com/hinofafa/Self-Attention-HearthStone-GAN
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/magnifiernet-towards-semantic-regularization
|
MagnifierNet: Towards Semantic Adversary and Fusion for Person Re-identification
|
2002.10979
|
https://arxiv.org/abs/2002.10979v4
|
https://arxiv.org/pdf/2002.10979v4.pdf
|
https://github.com/NIRVANALAN/magnifiernet_reid
| false
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/yolov3-an-incremental-improvement
|
YOLOv3: An Incremental Improvement
|
1804.02767
|
http://arxiv.org/abs/1804.02767v1
|
http://arxiv.org/pdf/1804.02767v1.pdf
|
https://github.com/jessychen1016/yolov3Onpytorch
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/text-detection-and-recognition-in-the-wild-a
|
Text Detection and Recognition in the Wild: A Review
|
2006.04305
|
https://arxiv.org/abs/2006.04305v2
|
https://arxiv.org/pdf/2006.04305v2.pdf
|
https://github.com/shengyp/fake_news
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/an-empirical-analysis-of-the-efficacy-of
|
An Empirical Analysis of the Efficacy of Different Sampling Techniques for Imbalanced Classification
|
2208.11852
|
https://arxiv.org/abs/2208.11852v1
|
https://arxiv.org/pdf/2208.11852v1.pdf
|
https://github.com/newaz-aa/empirical_analysis_of_sampling_techniques
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/leveraging-high-dimensional-side-information
|
Leveraging High-Dimensional Side Information for Top-N Recommendation
|
1702.01516
|
http://arxiv.org/abs/1702.01516v2
|
http://arxiv.org/pdf/1702.01516v2.pdf
|
https://github.com/IvanVigor/Leveraging-High-Dimensional-Side-Information-for-Top-N-Recommendation
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/a-fast-and-well-conditioned-spectral-method
|
A fast and well-conditioned spectral method for singular integral equations
|
1507.00596
|
http://arxiv.org/abs/1507.00596v2
|
http://arxiv.org/pdf/1507.00596v2.pdf
|
https://github.com/UnofficialJuliaMirror/SingularIntegralEquations.jl-e094c991-5a90-5477-8896-c1e4c9552a1a
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/edgecnn-convolutional-neural-network
|
EdgeCNN: Convolutional Neural Network Classification Model with small inputs for Edge Computing
|
1909.13522
|
https://arxiv.org/abs/1909.13522v1
|
https://arxiv.org/pdf/1909.13522v1.pdf
|
https://github.com/yangshunzhi1994/EdgeCNN
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/bayesian-latent-structure-discovery-from
|
Bayesian latent structure discovery from multi-neuron recordings
|
1610.08465
|
http://arxiv.org/abs/1610.08465v1
|
http://arxiv.org/pdf/1610.08465v1.pdf
|
https://github.com/slinderman/pypolyagamma
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/machine-learning-as-a-service-for-hep
|
Machine Learning as a Service for HEP
|
1811.04492
|
http://arxiv.org/abs/1811.04492v2
|
http://arxiv.org/pdf/1811.04492v2.pdf
|
https://github.com/vkuznet/MLaaS4HEP
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/joint-entity-recognition-and-relation
|
Joint entity recognition and relation extraction as a multi-head selection problem
|
1804.07847
|
http://arxiv.org/abs/1804.07847v3
|
http://arxiv.org/pdf/1804.07847v3.pdf
|
https://github.com/Sanjithae/Joint_NER_RE
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/mastering-chess-and-shogi-by-self-play-with-a
|
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
|
1712.01815
|
http://arxiv.org/abs/1712.01815v1
|
http://arxiv.org/pdf/1712.01815v1.pdf
|
https://github.com/QueensGambit/CrazyAra
| false
| false
| true
|
mxnet
|
https://paperswithcode.com/paper/finding-structural-knowledge-in-multimodal
|
Finding Structural Knowledge in Multimodal-BERT
|
2203.09306
|
https://arxiv.org/abs/2203.09306v1
|
https://arxiv.org/pdf/2203.09306v1.pdf
|
https://github.com/vsjmilewski/multimodal-probes
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/discriminative-region-proposal-adversarial
|
Discriminative Region Proposal Adversarial Networks for High-Quality Image-to-Image Translation
|
1711.09554
|
http://arxiv.org/abs/1711.09554v3
|
http://arxiv.org/pdf/1711.09554v3.pdf
|
https://github.com/godisboy/DRPAN
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/holist-an-environment-for-machine-learning-of
|
HOList: An Environment for Machine Learning of Higher-Order Theorem Proving
|
1904.03241
|
https://arxiv.org/abs/1904.03241v3
|
https://arxiv.org/pdf/1904.03241v3.pdf
|
https://github.com/tensorflow/deepmath/tree/master/deepmath/deephol
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/demorphy-german-language-morphological
|
DEMorphy, German Language Morphological Analyzer
|
1803.00902
|
http://arxiv.org/abs/1803.00902v1
|
http://arxiv.org/pdf/1803.00902v1.pdf
|
https://github.com/DuyguA/german-morph-dictionaries
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/fine-tuning-cnn-image-retrieval-with-no-human
|
Fine-tuning CNN Image Retrieval with No Human Annotation
|
1711.02512
|
http://arxiv.org/abs/1711.02512v2
|
http://arxiv.org/pdf/1711.02512v2.pdf
|
https://github.com/filipradenovic/cnnimageretrieval-pytorch
| true
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/pix2code-generating-code-from-a-graphical
|
pix2code: Generating Code from a Graphical User Interface Screenshot
|
1705.07962
|
http://arxiv.org/abs/1705.07962v2
|
http://arxiv.org/pdf/1705.07962v2.pdf
|
https://github.com/dashweta/MachineLearningPython
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/very-deep-convolutional-networks-for-large
|
Very Deep Convolutional Networks for Large-Scale Image Recognition
|
1409.1556
|
http://arxiv.org/abs/1409.1556v6
|
http://arxiv.org/pdf/1409.1556v6.pdf
|
https://github.com/bailvwangzi/repulsion_loss_ssd
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/decaf-a-deep-convolutional-activation-feature
|
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
|
1310.1531
|
http://arxiv.org/abs/1310.1531v1
|
http://arxiv.org/pdf/1310.1531v1.pdf
|
https://github.com/UCB-ICSI-Vision-Group/decaf-release
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/how-energy-efficient-can-a-wireless
|
How Energy-Efficient Can a Wireless Communication System Become?
|
1812.01688
|
https://arxiv.org/abs/1812.01688v2
|
https://arxiv.org/pdf/1812.01688v2.pdf
|
https://github.com/emilbjornson/how-energy-efficient
| true
| false
| true
|
none
|
https://paperswithcode.com/paper/a-unified-pseudo-c_ell-framework
|
A unified pseudo-$C_\ell$ framework
|
1809.09603
|
http://arxiv.org/abs/1809.09603v2
|
http://arxiv.org/pdf/1809.09603v2.pdf
|
https://github.com/andluizsouza/aps_namaster
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/high-magnitude-earthquake-identification
|
High Magnitude Earthquake Identification Using an Anomaly Detection Approach on HR GNSS Data
|
2412.00264
|
https://arxiv.org/abs/2412.00264v1
|
https://arxiv.org/pdf/2412.00264v1.pdf
|
https://github.com/srivastavaresearchgroup/saipy
| true
| false
| false
|
pytorch
|
https://paperswithcode.com/paper/introduction-to-the-r-package-tda
|
Introduction to the R package TDA
|
1411.1830
|
http://arxiv.org/abs/1411.1830v2
|
http://arxiv.org/pdf/1411.1830v2.pdf
|
https://github.com/stephenhky/PyTDA
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/unpaired-image-to-image-translation-using
|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
|
1703.10593
|
https://arxiv.org/abs/1703.10593v7
|
https://arxiv.org/pdf/1703.10593v7.pdf
|
https://github.com/xhujoy/CycleGAN-tensorflow
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/communication-algorithms-via-deep-learning
|
Communication Algorithms via Deep Learning
|
1805.09317
|
http://arxiv.org/abs/1805.09317v1
|
http://arxiv.org/pdf/1805.09317v1.pdf
|
https://github.com/yihanjiang/Sequential-RNN-Decoder
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/learning-to-fuse-music-genres-with-generative
|
Learning to Fuse Music Genres with Generative Adversarial Dual Learning
|
1712.01456
|
http://arxiv.org/abs/1712.01456v1
|
http://arxiv.org/pdf/1712.01456v1.pdf
|
https://github.com/aquastar/fusion_gan
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/the-importance-of-being-recurrent-for
|
The Importance of Being Recurrent for Modeling Hierarchical Structure
|
1803.03585
|
http://arxiv.org/abs/1803.03585v2
|
http://arxiv.org/pdf/1803.03585v2.pdf
|
https://github.com/ketranm/fan_vs_rnn
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/relative-pairwise-relationship-constrained
|
Relative Pairwise Relationship Constrained Non-negative Matrix Factorisation
|
1803.02218
|
http://arxiv.org/abs/1803.02218v1
|
http://arxiv.org/pdf/1803.02218v1.pdf
|
https://github.com/shawn-jiang/RPRNMF
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/going-deeper-with-convolutions
|
Going Deeper with Convolutions
|
1409.4842
|
http://arxiv.org/abs/1409.4842v1
|
http://arxiv.org/pdf/1409.4842v1.pdf
|
https://github.com/jimheaton/Ultra96_ML_Embedded_Workshop
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/densebox-unifying-landmark-localization-with
|
DenseBox: Unifying Landmark Localization with End to End Object Detection
|
1509.04874
|
http://arxiv.org/abs/1509.04874v3
|
http://arxiv.org/pdf/1509.04874v3.pdf
|
https://github.com/jimheaton/Ultra96_ML_Embedded_Workshop
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/value-function-approximation-via-low-rank
|
Value function approximation via low-rank models
|
1509.00061
|
http://arxiv.org/abs/1509.00061v1
|
http://arxiv.org/pdf/1509.00061v1.pdf
|
https://github.com/haoyio/LowRankMDP
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition
|
Deep Residual Learning for Image Recognition
|
1512.03385
|
http://arxiv.org/abs/1512.03385v1
|
http://arxiv.org/pdf/1512.03385v1.pdf
|
https://github.com/jimheaton/Ultra96_ML_Embedded_Workshop
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/collective-mind-part-ii-towards-performance
|
Collective Mind, Part II: Towards Performance- and Cost-Aware Software Engineering as a Natural Science
|
1506.06256
|
http://arxiv.org/abs/1506.06256v1
|
http://arxiv.org/pdf/1506.06256v1.pdf
|
https://github.com/ctuning/ck-mxnet
| false
| false
| true
|
mxnet
|
https://paperswithcode.com/paper/learning-tasks-for-multitask-learning
|
Learning Tasks for Multitask Learning: Heterogenous Patient Populations in the ICU
|
1806.02878
|
http://arxiv.org/abs/1806.02878v1
|
http://arxiv.org/pdf/1806.02878v1.pdf
|
https://github.com/mit-ddig/multitask-patients
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/multi-fidelity-gaussian-process-bandit
|
Multi-fidelity Gaussian Process Bandit Optimisation
|
1603.06288
|
http://arxiv.org/abs/1603.06288v4
|
http://arxiv.org/pdf/1603.06288v4.pdf
|
https://github.com/kirthevasank/mf-gp-ucb
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/deepcode-feedback-codes-via-deep-learning
|
Deepcode: Feedback Codes via Deep Learning
|
1807.00801
|
http://arxiv.org/abs/1807.00801v1
|
http://arxiv.org/pdf/1807.00801v1.pdf
|
https://github.com/hyejikim1/Deepcode
| true
| true
| false
|
tf
|
https://paperswithcode.com/paper/augmentor-an-image-augmentation-library-for
|
Augmentor: An Image Augmentation Library for Machine Learning
|
1708.04680
|
http://arxiv.org/abs/1708.04680v1
|
http://arxiv.org/pdf/1708.04680v1.pdf
|
https://github.com/Rahul-Venugopal/Image-augmentation_1
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/using-filter-banks-in-convolutional-neural
|
Using Filter Banks in Convolutional Neural Networks for Texture Classification
|
1601.02919
|
http://arxiv.org/abs/1601.02919v5
|
http://arxiv.org/pdf/1601.02919v5.pdf
|
https://github.com/v-andrearczyk/caffe-TCNN
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/towards-building-a-knowledge-base-of-monetary
|
Towards Building a Knowledge Base of Monetary Transactions from a News Collection
|
1709.05743
|
http://arxiv.org/abs/1709.05743v1
|
http://arxiv.org/pdf/1709.05743v1.pdf
|
https://github.com/benetka/kbmt
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/location-dependency-in-video-prediction
|
Location Dependency in Video Prediction
|
1810.04937
|
http://arxiv.org/abs/1810.04937v2
|
http://arxiv.org/pdf/1810.04937v2.pdf
|
https://github.com/AIS-Bonn/LocDepVideoPrediction
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/cdgan-cyclic-discriminative-generative
|
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation
|
2001.05489
|
https://arxiv.org/abs/2001.05489v2
|
https://arxiv.org/pdf/2001.05489v2.pdf
|
https://github.com/KishanKancharagunta/CDGAN
| true
| true
| true
|
pytorch
|
https://paperswithcode.com/paper/feature-pyramid-networks-for-object-detection
|
Feature Pyramid Networks for Object Detection
|
1612.03144
|
http://arxiv.org/abs/1612.03144v2
|
http://arxiv.org/pdf/1612.03144v2.pdf
|
https://github.com/huan123/py-fatser-rcnn
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/deep-hidden-physics-models-deep-learning-of
|
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
|
1801.06637
|
http://arxiv.org/abs/1801.06637v1
|
http://arxiv.org/pdf/1801.06637v1.pdf
|
https://github.com/maziarraissi/DeepHPMs
| true
| true
| true
|
tf
|
https://paperswithcode.com/paper/checkerboard-artifact-free-sub-pixel
|
Checkerboard artifact free sub-pixel convolution: A note on sub-pixel convolution, resize convolution and convolution resize
|
1707.02937
|
http://arxiv.org/abs/1707.02937v1
|
http://arxiv.org/pdf/1707.02937v1.pdf
|
https://github.com/kostyaev/ICNR
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/generating-person-images-with-appearance
|
Generating Person Images with Appearance-aware Pose Stylizer
|
2007.09077
|
https://arxiv.org/abs/2007.09077v1
|
https://arxiv.org/pdf/2007.09077v1.pdf
|
https://github.com/siyuhuang/PoseStylizer
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/cover-learning-covariate-specific-vector
|
CoVeR: Learning Covariate-Specific Vector Representations with Tensor Decompositions
|
1802.07839
|
http://arxiv.org/abs/1802.07839v2
|
http://arxiv.org/pdf/1802.07839v2.pdf
|
https://github.com/justinaL/tag
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/on-the-effects-of-small-graph-perturbations
|
On the Effects of Small Graph Perturbations in the MaxCut Problem by QAOA
|
2408.15413
|
https://arxiv.org/abs/2408.15413v1
|
https://arxiv.org/pdf/2408.15413v1.pdf
|
https://github.com/nesyalab/papers_with_code
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/structured-receptive-fields-in-cnns
|
Structured Receptive Fields in CNNs
|
1605.02971
|
http://arxiv.org/abs/1605.02971v2
|
http://arxiv.org/pdf/1605.02971v2.pdf
|
https://github.com/jhjacobsen/RFNN
| true
| true
| true
|
none
|
https://paperswithcode.com/paper/u-net-convolutional-networks-for-biomedical
|
U-Net: Convolutional Networks for Biomedical Image Segmentation
|
1505.04597
|
http://arxiv.org/abs/1505.04597v1
|
http://arxiv.org/pdf/1505.04597v1.pdf
|
https://github.com/work-mohit/UNet-from-scratch
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/hilloc-lossless-image-compression-with-1
|
HiLLoC: Lossless Image Compression with Hierarchical Latent Variable Models
|
1912.09953
|
https://arxiv.org/abs/1912.09953v1
|
https://arxiv.org/pdf/1912.09953v1.pdf
|
https://github.com/hilloc-submission/hilloc
| true
| true
| false
|
jax
|
https://paperswithcode.com/paper/keep-it-smpl-automatic-estimation-of-3d-human
|
Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image
|
1607.08128
|
http://arxiv.org/abs/1607.08128v1
|
http://arxiv.org/pdf/1607.08128v1.pdf
|
https://github.com/Jtoo/fitting_human_smpl_model
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/fairsight-visual-analytics-for-fairness-in
|
FairSight: Visual Analytics for Fairness in Decision Making
|
1908.00176
|
https://arxiv.org/abs/1908.00176v2
|
https://arxiv.org/pdf/1908.00176v2.pdf
|
https://github.com/ayong8/FairSight
| false
| false
| false
|
none
|
https://paperswithcode.com/paper/yolov3-an-incremental-improvement
|
YOLOv3: An Incremental Improvement
|
1804.02767
|
http://arxiv.org/abs/1804.02767v1
|
http://arxiv.org/pdf/1804.02767v1.pdf
|
https://github.com/qqwweee/keras-yolo3
| false
| false
| false
|
tf
|
https://paperswithcode.com/paper/learning-speaker-embedding-from-text-to
|
Learning Speaker Embedding from Text-to-Speech
|
2010.11221
|
https://arxiv.org/abs/2010.11221v1
|
https://arxiv.org/pdf/2010.11221v1.pdf
|
https://github.com/JaejinCho/espnet_spkidtts
| true
| true
| false
|
pytorch
|
https://paperswithcode.com/paper/synthesis-of-hybrid-automata-with-affine
|
Synthesis of Hybrid Automata with Affine Dynamics from Time-Series Data
|
2102.12734
|
https://arxiv.org/abs/2102.12734v1
|
https://arxiv.org/pdf/2102.12734v1.pdf
|
https://github.com/HySynth/HySynth
| true
| true
| false
|
none
|
https://paperswithcode.com/paper/convolutional-neural-networks-for-sentence
|
Convolutional Neural Networks for Sentence Classification
|
1408.5882
|
http://arxiv.org/abs/1408.5882v2
|
http://arxiv.org/pdf/1408.5882v2.pdf
|
https://github.com/andrewfwalters/w266-final-project
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/did-i-do-that-blame-as-a-means-to-identify
|
Did I do that? Blame as a means to identify controlled effects in reinforcement learning
|
2106.00266
|
https://arxiv.org/abs/2106.00266v3
|
https://arxiv.org/pdf/2106.00266v3.pdf
|
https://github.com/BY571/CEN-Network
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/automated-deep-abstractions-for-stochastic
|
Automated Deep Abstractions for Stochastic Chemical Reaction Networks
|
2002.01889
|
https://arxiv.org/abs/2002.01889v1
|
https://arxiv.org/pdf/2002.01889v1.pdf
|
https://github.com/dennerepin/StochNetV2
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/a-theoretically-grounded-application-of
|
A Theoretically Grounded Application of Dropout in Recurrent Neural Networks
|
1512.05287
|
http://arxiv.org/abs/1512.05287v5
|
http://arxiv.org/pdf/1512.05287v5.pdf
|
https://github.com/abdelrahmansaud/vLSTM
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/anisotropic-osmosis-filtering-for-shadow
|
Anisotropic osmosis filtering for shadow removal in images
|
1809.06298
|
http://arxiv.org/abs/1809.06298v1
|
http://arxiv.org/pdf/1809.06298v1.pdf
|
https://github.com/simoneparisotto/Anisotropic-osmosis-filter
| false
| false
| true
|
none
|
https://paperswithcode.com/paper/from-softmax-to-sparsemax-a-sparse-model-of
|
From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification
|
1602.02068
|
http://arxiv.org/abs/1602.02068v2
|
http://arxiv.org/pdf/1602.02068v2.pdf
|
https://github.com/vene/sparse-structured-attention
| false
| false
| true
|
pytorch
|
https://paperswithcode.com/paper/fully-convolutional-networks-for-semantic-1
|
Fully Convolutional Networks for Semantic Segmentation
|
1411.4038
|
http://arxiv.org/abs/1411.4038v2
|
http://arxiv.org/pdf/1411.4038v2.pdf
|
https://github.com/GodPater/model_fcn
| false
| false
| true
|
tf
|
https://paperswithcode.com/paper/learning-deep-features-for-discriminative
|
Learning Deep Features for Discriminative Localization
|
1512.04150
|
http://arxiv.org/abs/1512.04150v1
|
http://arxiv.org/pdf/1512.04150v1.pdf
|
https://github.com/schizop/SA
| false
| false
| true
|
pytorch
|
Subsets and Splits
Framework Repo Connectivity Analysis
Reveals the number of official and unofficial repositories and papers associated with different frameworks, highlighting the most connected ones.
Deduplicated Paper-Code Links
This query provides a detailed and organized list of repositories linked to single papers, highlighting official status and mention sources, which is useful for understanding the relationship between papers and their corresponding repositories.
Paper Repo Counts & Distribution
Provides detailed statistics on the distribution of papers across different numbers of repositories, highlighting the percentage of papers with multiple repositories.
Quantum Papers with Code Links
Lists quantum-related papers with their titles, arXiv IDs, frameworks, and code repository links, providing a valuable resource for researchers interested in quantum computing.
Financial Stock Price Prediction
Finds papers related to stock prices, financial markets, and predictions, providing a focused subset for further analysis.
Search for YOLO Links
Retrieves a limited set of records related to YOLO, providing basic information about papers and repositories but without deeper analysis.
Prompt Optimization and Personalization
Retrieves a limited set of papers with titles containing specific keywords related to prompt optimization and personalization, providing basic filtering of the dataset.